Skip to main content
Log in

Kinetics of gypsum dissolution in water

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The kinetics of dissolution of different lithological varieties of gypsum was experimentally investigated at 5–25°C and P = 0.1 MPa, and a simple rate model was proposed on the basis of the sum of the rates of forward and backward reactions and proportionality to the activity product of calcium and sulfate ions. The activation energies of the forward reaction correspond to dissolution controlled by surface reaction kinetics. It was shown that the kinetic parameters of gypsum dissolution are invariant to the initial concentrations of NaCl solutions (up to 2 M). It was shown that the surface roughness factor (ξ) depends on the chemical composition of lithological varieties and the average grain size of gypsum and changes during epigenetic processes. The obtained kinetic parameters of gypsum dissolution in water will be used for the calculation of groundwater-driven mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. F. Barton and N. N. Wilde, “Dissolution rates of polycrystalline samples of gypsum and orthorhombic forms of calcium sulphate by a rotating disc method,” Trans. Faraday Soc. 67, 3590–3597 (1971).

    Article  Google Scholar 

  • A. P. Belopol’skii, “Measurement of the dissolution rate of solids,” Izv. SFKhA 19, 395–399 (1949).

    Google Scholar 

  • R. A. Berner, “Rate control of mineral dissolution under Earth surface conditions,” Am. J. Sci. 278 (9), 1235–1252 (1978).

    Article  Google Scholar 

  • A. G. Betekhtin, Mineralogy (Gosgeolizdat, Moscow, 1950) [in Russian].

    Google Scholar 

  • L. L. Birgumshaw and A. C. Riddiford, “Transport control in heterogeneous reactions,” Chem. Soc. Quart. 6 (2), 157–182 (1952).

    Article  Google Scholar 

  • D. Bosbach and W. Rammensee, “In situ investigation of growth and dissolution on the (010) surface of gypsum by scanning force microscopy,” Geochim. Cosmochim. Acta 58, 843–849 (1994).

    Article  Google Scholar 

  • D. Buhmann and W. Dreybrodt, “Calcite dissolution kinetics in the systemH2O–CO2–CaCO3 with participation of foreign ions,” Chem. Geol. 64, 89–102 (1987).

    Article  Google Scholar 

  • J. Colombani, “Measurement of the pure dissolution rate constant of a mineral in water,” Geochim. Cosmochim. Acta 72, 5634–5640 (2008).

    Article  Google Scholar 

  • M. Davion, “Etude sur la vitesse de dissolution des sels cristallises,” Ann. Chim. Phys. 12 (8), 259–295 (1953).

    Google Scholar 

  • B. Delmon, Introduction a la Cin@etique H@et@erog@ene (Editions Technip, Paris, 1969).

    Google Scholar 

  • T. Dewers and M. Raines “Reply to comment on: mixed transport/reaction control of gypsum dissolution kinetics,” Chem. Geol. 168, 275–278 (2000).

    Article  Google Scholar 

  • W. Dibble, and W. Tiller, “Model for interface-controlled reactions,” Geochim. Cosmochim. Acta 45 (1), 79–92 (1981).

    Article  Google Scholar 

  • W. Dreybrodt and F. Gabrovsek, “Comments on: Mixed transport/reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karst by Michael A. Raines and Thomas A. Dewers in Chemical Geology 140, 29–48, 1997,” Chem. Geol. 168, 169–172 (2000).

    Article  Google Scholar 

  • C. Fan and H. H. Teng, “Surface behavior of gypsum during dissolution,” Chem. Geol. 245, 242–253 (2007).

    Article  Google Scholar 

  • D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  • H. Frenkel, Z. Gerstl, and N. Alperovitch, “Exchangeinduced dissolution of gypsum and reclamation of sodic soil,” J. Soil Sci. 40, 599–611(1989).

    Article  Google Scholar 

  • A. N. James and A. R. Lupton, “Gypsum and anhydrite in foundations of hydraulic structures,” Geotechnique 28 (3), 249–272 (1978).

    Article  Google Scholar 

  • A. A. Jeschke, K. Vosbeck, and W. Dreybrodt, “Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics,” Geochim. Cosmochim. Acta 65 (1), 27–34 (2001).

    Article  Google Scholar 

  • N. A. Karazhanov, “Kinetics of calcium sulfate dissolution,” Tr. VNIIG 36, 177–188 (1959).

    Google Scholar 

  • V. P. Karshin and V. A. Grigoryan, “Kinetics of gypsum dissolution in water,” Zh. Fiz. Khim. 44 (5), 1356 (1970).

    Google Scholar 

  • F. F. Laptev, “Aggressive effect of water on carbonate rocks, gypsum, and concrete,” Tr. Vsesoyuz. Kont. Spets. Geol. Kartirovaniya (Moscow—Leningrad, 1939) [in Russian].

    Google Scholar 

  • A. C. Lasaga, “Chemical kinetics of water—rock interaction,” J. Geophys. Res. B89 (6), 4009–4025 (1984).

    Article  Google Scholar 

  • A. L. Lebedev and A. V. Lekhov, “Kinetics of dissolution of natural gypsum in water at 5–25°C,” Geokhimiya 6, 865–874 (1989).

    Google Scholar 

  • A. L. Lebedev and A. V. Lekhov, “Simulation of changes in the permeability of gypsified fissured–porous rocks,” Geoekol. Inzh. Geol. Girdogeol. Geokriol. 6, 539–550 (2010).

    Google Scholar 

  • A. L. Lebedev, A. V. Lekhov, V. N. Sokolov, and N. A. Svitoch, “Rate of gypsum leaching from the pore space of sandstones,” Geoekol. Inzh. Geol. Girdogeol. Geokriol. 5, 438–447 (2003).

    Google Scholar 

  • O. Levenspiel, Chemical Reaction Engineering (John Wiley, New York, 1967).

    Google Scholar 

  • V. G. Levich, Physicochemical Hydrodynamics (Akad. Nauk SSSR, Moscow, 1952) [in Russian].

    Google Scholar 

  • S.-T. Liu and G. H. Nancollas, “The kinetics of dissolution of calcium sulfate dehydrate,” J. Inorg. Nucl. Chem. 33 (8), 2311–2316 (1971).

    Article  Google Scholar 

  • W. L. Marshall and R. Slusher, “Thermodynamics of calcium sulfate dihydrate in aqueous sodium chloride solutions, 0–110°,” J. Phys. Chem. 70(12), 4015–4027 (1966).

    Article  Google Scholar 

  • M. M. Mbogoro, M. E. Snowden, M. A. Edwards, M. Peruffo, and R. Unwin, “Intrinsic kinetics of gypsum and calcium sulfate anhydrite dissolution: surface selective studies under hydrodynamic control and the effect of additives,” J. Phys. Chem. 115, 10147–10154 (2011).

    Article  Google Scholar 

  • B. F. Pedersen and D. Semmingsen, “Neutron diffraction refinement of the structure of gypsum, CaSO4 · 2H2O,” Acta Crystallogr. B38 (4), 1074–1077 (1982).

    Article  Google Scholar 

  • M. A. Raines, and T. Dewers, “Mixed transport/reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karst,” Chem. Geol. 140, 29–48 (1997).

    Article  Google Scholar 

  • T. K. Sherwood, R. L. Pigford, and C. R. Wilke, Mass Transfer (McGraw-Hill Book, London, 1975).

    Google Scholar 

  • E. L. Sjoberg and D. Rickard, “The influence of experimental design on the rate of calcite dissolution,” Geochim. Cosmochim. Acta 47, 2281–2286 (1983).

    Article  Google Scholar 

  • A. K. Smith and C. K. Colton, “Mass transfer to a rotating fluid,” AICHE J. 18 (5), 949–967 (1972).

    Article  Google Scholar 

  • V. W. Truesdale and C. Sebu, “A new analytic integration of the rate equation for batch dissolution of salts in the presence of common ion,” Aquat. Geochem. 19, 39–56 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Lebedev.

Additional information

Original Russian Text © A.L. Lebedev, 2015, published in Geokhimiya, 2015, No. 9, pp. 828–841.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.L. Kinetics of gypsum dissolution in water. Geochem. Int. 53, 811–824 (2015). https://doi.org/10.1134/S0016702915070058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915070058

Keywords

Navigation