Skip to main content
Log in

Mineralogical, geochemical and isotopic effect of silica in ultramaphic systems, eastern Anatolian Turkey

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Tectonic and hydrogeochemical functions resulted in ophicalcite and listvenite formations thriving throughout tectonic lines in ultramafic rocks in Narman province of Erzurum and Alacakaya province of Elazig. These rocks are most commonly found in serpentinised ultramafites. Serpentine minerals thriving in Ophicalcites (lizardite, chrysotile) and talc, diopside and chromite accompanying these minerals indicate a peridotitic origin, the presence of fluid in the environment and a high reaction rate. In the mineral paragenesis of listvenites and ophicalcites determined by XRD method, quartz + dolomite, dolomite + calcite + quartz, dolomite + quartz + magnesite are mainly determined. In the serpentinised ultramafic rocks, serpentine + magnesite, magnesite + talc and finally magnesite + quartz formations show the change in the thermodynamical conditions (pH, reduction, permeability) and the activity of silica. Encircling such minerals as olivine and lizardite/chrysotile determined by mineralogical examinations, calcite, chlorite, iddingsite and hematite zones indicate progressing metamorphism conditions, the changes occurring in Mg-silicates with the effect of fluids rich in Ca and CO2 and the formation of carbonate. Isotopic studies of δ13C/12C and δ18O/16O ratios of calcite from carbonates and breccia matrix are typical of hydrothermal deposits and serpentinite-carbonate metasomatites. As a result of microscopic examinations, and chemical and isotopic analyses, it can be seen that tectonism, carbonate activity thriving with the hydrothermal functions of medium or low temperature and the progressive metamorphism are effective in the formation of ophicalcites thriving in the ultramafics; the alterations of silicification-carbonatisation type thriving with the metasomatic functions in which the temperature is relatively high are active in the formation of listvenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Akbulut, Ö. Piškin, and A. I. Karayiǧit, “The genesis of the carbonatised and silicified ultramafics known as listwanites: a case study from the Mihahççik region (Eskişehir), NW Turkey,” Geol. J. 41, 557–580 (2006).

    Article  Google Scholar 

  • D. E. Allen and D. E. Seyfried, “Serpentinisation and heat generation: Constraints from Lost City and Rainbow hydrothermal systems,” Geochim. Cosmochim. Acta 6, 1347–1354 (2004).

    Article  Google Scholar 

  • M. Andreani, L. Luquot, P. Gouze, M. Godard, E. Hoise, and B. Gibert, “Experimental study of carbon sequestration reactions controlled-by the percolation of CCV rich brine through peridotites,” Environ. Sci. Technol. 43, 1226–1231 (2009).

    Article  Google Scholar 

  • M. Arif and C. J. Moon, “Geochemistry of serpentinised peridotites from the Indus suture ophiolite in Swat, NW Pakistan,” Geol. Bull. Univ. Peshawar 36, 1–10 (2003).

    Google Scholar 

  • F. Aumento and H. Loubat, “The Mid-Atlantic ridge near 45 N, XVI. Serpentinised ultramafic intrusions,” Can. J. Earth Sci. 8, 631–663 (1981).

    Article  Google Scholar 

  • D. A. Artemyev and V. V. Zaykov, “The types and genesis of ophicalcites in Lower Devonian olistrostromes at cobalt-bearing massive sulphide deposits in the West Magnitogorsk paleoisland arc (South Urals),” Russ. Geol. Geophys. 51, 750–763 (2010).

    Article  Google Scholar 

  • C. H. Ash and R. L. Arksey, “The listwanite-lode gold association in British Columbia,” Geological Fieldwork 1989, B.C. Department of Energy and Mines, pap. No. 1990-1, 365–364 (1990).

    Google Scholar 

  • W. Bach, C. J. Garrido, H. Paulick, J. Harvey, and M. Rosner, “Seawater-peridotite interactions: first insights from ODP Leg 209, MAR 15 N,” Geochem. Geophys. Geosyst. 5, Q09F26 (2004).

    Article  Google Scholar 

  • I. Barnes, J. R. O’Neil, J. B. Rapp, and D. E. White, “Silica carbonate alteration of serpentine: wall rock alterations in mercury deposits of the California Coast Ranges,” Econ. Geol. 68, 388–398 (1973).

    Article  Google Scholar 

  • T. J. Barnett and H. Friedrichsen, “Stable isotopic composition of atypical ophiolitic rocks from east Liguria, Italy,” Chem. Geol. 80, 71–84 (1987).

    Google Scholar 

  • A. Baronnet and F. Boudier, “Microstructural and microchemical aspects of serpentinisation,” in 11th Annual V. M. Goldschmidt Conference (Art, Hot Springs, 2001), p. 3382.

    Google Scholar 

  • E. Bashir, S. Naseem, T. Akhtar, and K. Shireen, “Characteristics of ultramafic rocks and associated magnesite deposits, Nal Area, Baluchistan,” Pakistan. J. Geol. Min. Res. 1(2), 34–41 (2009).

    Google Scholar 

  • J. S. Beard and L. Hopkinson, “A fossil serpentinisation-related hydrothermal vent, Ocean Drilling Program Leg 173, Site 1068 (Iberia Abyssal Plain): some aspects of mineral and fluid chemistry,” J. Geophys. Res. 105, 16527–16539 (2000).

    Article  Google Scholar 

  • A. Beinlich, H. Austrheim, J. Glodny, M. Erambert, and T. B. Andersen, “CO2 sequestration and extreme Mg depletion in serpentinised peridotite clasts from the Devonian Solund basin, SW-Norway,” Geochim. Cosmochim. Acta 74, 6935–6964 (2010).

    Article  Google Scholar 

  • C. Boschi, A. Dini, L. Dallai, G. Ruggieri, and G. Gianelli, “Enhanced CO2-mineral sequestration by cyclic hydraulic fracturing and Si-rich fluid infiltration into serpentinites at Malentrata (Tuscany, Italy),” Chem. Geol. 265, 209–226 (2009).

    Article  Google Scholar 

  • R. Bogoch, “Classification and genetic models of ophicarbonate rocks,” Ofioliti 12, 23–36 (1987).

    Google Scholar 

  • J. K. Böhlke, “Comparison of metasomatic reactions between a common CO2-rich vein fluid and diverse wall rocks; intensive variables mass transfers, and Au mineralisation at Alleghany, California,” Econ. Geol. 84, 291–327 (1989).

    Article  Google Scholar 

  • S. L. Brantley, M. Bau, S. Yau, B. Alexander, and J. Chesley, “Interpreting kinetics of groundwater-mineral interaction using major elements, trace element, and isotopic tracers,” in Proceedings of 10th International Symposium on Water-Rock, Lisse, 2001 (Lisse, Balkema, 2001), pp. 13–18.

    Google Scholar 

  • J. L. Charlou, J. P. Donval, Y. Fouquet, P. Jean-Baptiste, and N. Holm, “Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field,” Chem. Geol. 191, 345–359 (2002).

    Article  Google Scholar 

  • I. Cortesogno, B. Galbiati, and G. Principi, “Preorophic metamorphic and tectonic evolution of the ophiolite mafic rocks (northern Apennine and Tuscany),” Boll. Soc. Geol. Let. 94, 291–327 (1981).

    Google Scholar 

  • S. G. Dabitzias, “Petrology and genesis of the Vavdos cryptocrystalline magnesite deposits, Chalkidiki Peninsula, northern Greece,” Econ. Geol. 75, 1138–1151 (1980).

    Article  Google Scholar 

  • H. J. B. Dick and T. Bullen, “Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas,” Contrib. Mineral. Petrol. 86, 54–76 (1984).

    Article  Google Scholar 

  • T. Dickson, “Carbonate mineralogy and chemistry,” in Carbonate Sedimentology, Ed. by M. E. Tucker and V. P. Wright (Blackwell Science, Oxford, 1990), pp. 1–482.

    Google Scholar 

  • M. P. Escayola, J. A. Proenza, C. van Staal, N. Rogers, and T. Skulski, “The point Rosse listvenites, Baie Vert, Newfoundland: altered ultramafic rocks with potential for gold mineralisation?,” Newfoundland Labrador Depart. Nat. Resour. Geol. Surv. Rept. No. 09-1, 1–12 (2009).

    Google Scholar 

  • B. W. Evans, “Metamorphism of Alpine peridotite and serpentinite,” Ann. Rev. Earth Planet. Sci. 5, 397–447 (1977).

    Article  Google Scholar 

  • B. W. Evans, “Control of the products of serpentinisation by the Fe2+ Mg−1 exchange potential of olivine and orthopyroxene,” J. Petrol. 49, 1873–1887 (2008).

    Article  Google Scholar 

  • P. Freyssinet and A. S. Farah, “Geochemical mass balance and weathering rates of ultramafic schists in Amazonia,” Chem. Geol. 170, 133–151 (2000).

    Article  Google Scholar 

  • B. R. Frost, “On the stability of sulphides, oxides and native metals in serpentinite,” J. Petrol. 26, 31–63 (1985).

    Article  Google Scholar 

  • B. R. Frost, and J. S. Beard, “On silica activity and serpentinisation,” J. Petrol. 48(7), 1351–1368 (2007).

    Article  Google Scholar 

  • G. Fruh-Green, D. S. Kelly, S. M. Bernascom, J. A. Karson, K. A. Ludwig, D. A. Butterfield, C. Boschi, and G. Proskurowski, “30000 years of hydrothermal activity at the Lost City vent field,” Science 301, 495–498 (2004).

    Article  Google Scholar 

  • S. J. Gerdemann, D. C. Dahlin, W. K. O’Connor, and L. R. Penner, “Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals,” in Second Annual Conference on Carbon Seqestration, Alexandria, 2003, (Alexandria, 2003), Rept. No. DOE/ARC-2003-018, OSTI ID:898299.

    Google Scholar 

  • C. Geloni and G. Gianelli, “A preliminary geochemical model of the fluid-rock interaction processes forming the eastern Liguria ophicalcite (northern Apennines, Italy),” Per. Mineral. 76, 137–154 (2007).

    Google Scholar 

  • M. F. Ghoneim, I. A. Saleem, and M. M. Hamdy, “Origin of magnesite veins in serpentinites from Mount El-Rubshi and Mount El-Maiyit, Eastern Desert Egypt,” Archiwum Mineralogiczne 54, 41–63 (2003).

    Google Scholar 

  • C. Halls and R. Zhao, “Listwanite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence eat Creggan Baun, Co. Mayo, Republic of Ireland,” Mineral. Deposita 30, 303–313 (1995).

    Article  Google Scholar 

  • L. D. Hansen, G. M. Dipple, T. M. Gordon, and D. A. Kellett, “Carbonated serpentinite (listwanite) at Atlin, British Columbia: geological analogue to carbon dioxide sequestration,” Can. Mineral. 43, 225–239 (2005).

    Article  Google Scholar 

  • V. S. Kamenetsky, A. J. Crawford, and S. Meffre, “Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks,” J. Petrol. 42, 665–671 (2001).

    Article  Google Scholar 

  • D. S. Kelley, J. A. Karson, D. K. Blackman, G. L. Fruh-Green, D. A. Butterfield, G. H. Lebon, and P. Rivizzigno, “The AT-60 Shipboard party. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N,” Nature 412, 145–149 (2001).

    Article  Google Scholar 

  • P. B. Kelemen and J. M. Matter, “In situ carbonation of peridotite for CO2 storage,” PNAS 105, 17295–017300 (2008).

    Article  Google Scholar 

  • M. Keskin, J. A. Pearce, and J. G. Mitjhell, “Volcanostratigraphy and geochemistry of collision related volcanism on the Erzurum-Kars Plateau, north-eastern Turkey,” J. Volcanol. Geotherm. Res. 85, 355–404 (1998).

    Article  Google Scholar 

  • M. Keskin, Ş. C. Genç, and O. Tüysüz, “Petrology and geochemistry of post-collisional Middle Eocene volcanic units in North-Central Turkey: evidence for magma generation by slab break off following the closure of the Northern Neotethys Ocean,” Lithos 104(1–4), 267–305 (2004).

    Google Scholar 

  • S. -T. Kim, and J. R. O’Neil, “Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates,” Geochim. Cosmochim. Acta 61, 3461–3475 (1997).

    Article  Google Scholar 

  • F. Klein and W. Bach, “Fe-Ni-Co-O-S phase relations in peridotite seawater interactions,” J. Petrol. 50, 37–59 (2009).

    Article  Google Scholar 

  • F. Klein and C. J. Garrido, “Thermodynamic constraints on mineral carbonation of serpentinised peridotite,” Lithos 126, 147–160 (2011).

    Article  Google Scholar 

  • N. Konak, “Geology of the NE Pontides (Oltu-Olur-Şenkaya-Narman-Tortum-Uzundere-Yusufeli),” MTA Rept. No. 10489, (2001).

    Google Scholar 

  • M. J. Mckelvy, A. V. G. Chizmeshya, K. Squires, R. W. Carpenter, and H. Bearat, DOE Final Report 924162: a Novel Approach to Mineral Carbonation: Enhancing Carbonation while Avoiding Mineral Pretreatment (Process Cost: Tempe, 2007).

    Google Scholar 

  • V. Melfos, A. Magganas, P. Voudouris, and M. Kati, “The Mesozoic Larissa ophicalcite serpentinite association in eastern Thessaly, Greece: mineralogical, geochemical and isotopic constraints for rocks formed in an ocean-continent transition setting,” Geophys. Res. Abstr. 11, 274–289 (2009).

    Google Scholar 

  • K. L. Milliken and J. K. Morgan, “Chemical evidence for near-seafloor precipitation of calcite in serpentinites (Site 897) and serpentinite breccias (Site 899), Iberia Abyssal Plain,” Proc. Ocean Drilling Program, Sci. Res., Ed. by R.B. Whitmarsh 149, 553–558 (1996).

    Google Scholar 

  • S. Nasir, A. R. Al Sayigh, A. AL Harthy, S. Al-Khirbash, O. Al-Jaaidi, A. Musllam, A. Almishwat, and S. Al-Busaidi, “Mineralogical and geochemical characterisation of listwanite from the Semail Ophiolite, Oman,” Chem. Erde-Geochem. 67, 213–228 (2007).

    Article  Google Scholar 

  • S. A. Nelson, “Basaltic and gabroic rocks,” in Ophiolite/Basaltic and Gabbroic rocks.htm (2007).

  • G. T. Nixon, “Geology and precious metal potential of mafic-ultramafic rocks in British Columbia: current progress,“ in Geological fieldwork 1989, A Summary of Field Activities And Current Research, Province of British Columbia, (Mineral Resources Division Geology Survey Branch, 1990), Paper 1990-1, pp. 353–358.

    Google Scholar 

  • Y. Z. Özkan, A. Çaǧatay, A. Yilmaz, E. C. Acar, “Geology and an appranch [??] the genesis of the polymetallic mineralisation of the area around Karada (Erzurum-Narman),” Geol. Eng. Bull., 29–32 (1984).

    Google Scholar 

  • J. L. Palandri, and M. N. Reed, “Geochemical models of metasomatism in ultramafic systems: serpentinisation, rodingitisation, and sea floor carbonate chimney precipitation,” Geochim.Cosmochim. Acta 68, 1115–1133 (2004).

    Article  Google Scholar 

  • P. Robinson, J. Malpas, M. F. Zhoui, C. Ash, J. S. Yang, and W. J. Bai, “Geochemistry and origin of listwanites in the Sartohay and Luobusa Ophiolites, China,” Int. Geol. Rev. 47, 177–202 (2005).

    Article  Google Scholar 

  • R. Rollinson, Using Geochemical Data: Evaluation, Presentation, Interpretation (Longman Scientific&Technical, Essex, 1993).

    Google Scholar 

  • M. J. Russell and A. J. Hall, “The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front,” J. Geol. Soc. London 154, 377–402 (1997).

    Article  Google Scholar 

  • I. B. Seravkin, “The types of pyrite deposits in the South Urals and the sources of ore substance,” in Endogenic Mineralisation in Mobile Belts. Proc. Intern. Sci. Conf., Yekaterinburg, Russia, 2007 (Inst. Geol. Geokhim Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2007), pp. 58–62 [in Russian].

    Google Scholar 

  • N. H. Sleep, A. Meibom, T. Fridiksson, R. G. Coleman, and D. K. Bird, “H2-rich fluids from serpentinisation:geochemical and biotic implications,” Proc. Nat. Acad. Sci. 104, 12818–12823 (2004).

    Article  Google Scholar 

  • J. E. Snow, E. Hellebrand, W. Jokat, and R. Mühe “Magmatic and hydrothermal activity in Lena Trough, Arctic Ocean,” EOS 8(2), 193–198 (2001).

    Article  Google Scholar 

  • A. A. Surour and E. H. Arafa, “Ophicarbonates: calicfied serpentinites from Gebel Mohagara, Wadi Ghadir area, Eastern Sesert, Egypt,” J. Afr. Earth Sci. 24(3), 315–324 (1997).

    Article  Google Scholar 

  • A. M. C. Şengör and Y. Yılmaz, “Tethyan evolution of Turkey: a plate tectonic approach,” Tectonophysics 75, 181–241 (1981).

    Article  Google Scholar 

  • S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution, (Blackwell, Oxford, 1985).

    Google Scholar 

  • B. Treves and G. D. Harper, “Exposure of serpentinites on ocean floor: sequence of faulting and hydrofracturing in the northern Apennine ophicalcites,” Ofioliti 19, 435–466 (1994).

    Google Scholar 

  • B. Treves, D. Hıckmott, and G. Vaggelli, “Texture and microchemical data of oceanic hydrothermal calcite vein, Northern Apennine ophicalcites,” Ofioliti, 20, 111–122 (1995).

    Google Scholar 

  • V. Trommsdorff, B. W. Evans, and H.-R. Pfeifer, “Ophicarbonate rocks: metamorphic reactions and possible origin,” Archive Science Geneve 33, 361–364 (1980).

    Google Scholar 

  • B. Tsikouras, S. Karipi, T. A. Grammatikopoulos, K. Hatzipanagiotou, “Listwanite evolution in the ophiolite melange of Iti Mountain (continental Central Greece),” Eur. J. Mineral. 18, 243–255 (2006).

    Article  Google Scholar 

  • A. Uçurum, “Geology, geochemistry and mineralisation of the silica-carbonate alteration (Listwanite) from late cretaceous ophiolitic mélanges at Cütirek-Divriǧi in Sivas province and at Gütiven, Karakuz-Hekimhan in Malatya province, Central East Turkey,” Ph. D. Thesis, (University of Nevada Reno, 1996).

    Google Scholar 

  • A. Uçurum, “Listwanites in Turkey: perspectives on formation and precious metal concentration with reference to occurrences in east-central Anatolia,” Ofioliti 25, 15–29 (2000).

    Google Scholar 

  • W. Von Hanold, and B. Weber, “Schwarzer calcit von der Schwaebischen,” Alb. Aufschluss 33, 45–48 (1982).

    Google Scholar 

  • C. Vitia and M. Mellini, “Mesh textures and bastites in the Elba retrograde serpentinites,” Eur. J. Mineral. 10, 1341–1359 (1998).

    Article  Google Scholar 

  • T. E. L. Xu, N. Sonnenthal, N. Spycher, and K. Pruess, “TOUGHREACT user guide: A simulation programme for non-isothermal multiphase reactive geochemical transport in variable saturated geological media,” Lawrence Berkeley National Laboratory Report No. LBNL-55460, (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşe Didem Kiliç.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiliç, A.D., İnceöz, M. Mineralogical, geochemical and isotopic effect of silica in ultramaphic systems, eastern Anatolian Turkey. Geochem. Int. 53, 369–382 (2015). https://doi.org/10.1134/S0016702915040035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915040035

Keywords

Navigation