Skip to main content
Log in

Quantification of the role of organisms in the geochemical migration of trace metals in the ocean

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The contribution of biological processes to the geochemical migration of trace metals (Fe, Mn, Ni, Co, Cu, Zn, Cd, Pb, and As) was quantified for three geochemically distinctive areas of the ocean: continent—ocean boundary (marginal filter), euphotic zone of the open ocean, and deep-sea hydrothermal vent fields of the Mid-Atlantic Ridge. A new term “trace metal bioaccumulation potential” is introduced to compare the bioaccumulation intensity of different organisms. The bioaccumulation potential accounts for the ability of living matter to produce biomass. The bioaccumulation potential is calculated on the basis of mean whole-body concentrations of trace metals in the dominant communities and the biomass per unit area of the biotope. The results showed that the highest bioaccumulation potential is recorded in chemosynthesis-based benthic biota from deep-sea hydrothermal vent fields. At the same time, Fe, an essential heavy metal controlling a number of biochemical processes in organisms, was found to have the highest bioaccumulation potential, while Hg, a toxic heavy metal, has the lowest bioaccumulation potential. The bioaccumulation potential in the marginal filter and euphotic zone decreases in the following order Fe > Zn > Mn > Cu, whereas in deep-sea hydrothermal fields, the bioaccumulation potential of Mn is considerably lower, close to those of Pb, Co, Cr, and Cd. The order of trace metals bioaccumulation potential in biota is broadly similar in all three geochemically different regions. This implies that the bioaccumulation function of the biota is characterized by a geochemical resemblance in different parts of the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. J. W. De Baar, F. W. Boyd, K. H. Coale, M. R. Landry, A. K. Tsuda, P. Assmy, D. C. E. Bakker, Y. Bozec, R. T. Barber, M. A. Brzezinski, and K. O. Busseler, “Synthesis of iron fertilization experiments: from the Iron Age in the Age of Enlightment,” J. Geophys. Res. 110, C09S16 (2005), doi:10.1029/2004JC002601.

    Google Scholar 

  • G. M. Belyaev, Bottom Fauna of the Ultraabyssal Zones of the World Ocean (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  • E. K. Berner and R. A. Berner, The Global Water Cycle (Prentice Hall, New York, 1987).

    Google Scholar 

  • E. I. Blinova and V. B. Vozzhinskaya, “Marine microphyres and plant resources of the ocean,” in Principles of Oceanic Biological Productivity and its Use (Nauka, Moscow, 1971), pp. 124–148 [in Russian].

    Google Scholar 

  • Yu. A. Bogdanov and A. Yu. Lein, “Hydrothermal activity and its role in oceanic geochemistry,” in Physical, Geological, and Biological Studies of Oceans and Seas (Nauchnyi mir, Moscow, 2010), pp. 357–370 [in Russian].

    Google Scholar 

  • Yu. A. Bogdanov, E. G. Gurvich, and A. P. Lisitzyn, “Biogenic differentiation of sedimentary material and problems of pelagic sedimentation in the Pacific Ocean,” in Climatic Zoning and Sedimentation (Nauka, Moscow, 1981), pp. 198–218 [in Russian].

    Google Scholar 

  • V. G. Bogorov, World Ocean Plankton (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  • N. Le Bris, B. Govenar, C. Le Gall, and C. R. Fisher, “Variability of physico-chemical conditions in 9°50′ N EPR diffuse flow vent habitats,” Mar. Chem. 98, 167–182 (2006).

    Article  Google Scholar 

  • W. S. Broecker and T. H. Peng, Tracers in the Sea (Eldigo Press, New York-Palisades, 1982).

    Google Scholar 

  • K. W. Bruland and M. C. Lohan, “Controls of trace metals in sea water,” in Treatise on Geochemistry. Vol. 6. The Oceans and Marine Geochemistry, Ed. by H.D. Holland and K.K. Turekian (Elsevier, Amsterdam, 2004), pp. 23–47.

    Google Scholar 

  • E. Callender, “Heavy metals in the environment-historical trends,” in Treatise on Geochemistry. Vol. 6. The Oceans and Marine Geochemistry, Ed. by H.D. Holland and K.K. Turekian (Elsevier, Amsterdam, 2004), pp. 67–103.

    Google Scholar 

  • C. L. De la Rocha, “The biological pump,” in Treatise on Geochemistry. Vol. 6. The Oceans and Marine Geochemistry, Ed. by H.D. Holland and K.K. Turekian (Elsevier, Amsterdam, 2004), pp. 84–111.

    Google Scholar 

  • L. L. Demina, “The concentration function of the bottom fauna at the deep sea hydrothermal vent fields,” Dokl. Earth Sci. 430(1), 62–66 (2010).

    Article  Google Scholar 

  • L. L. Demina, “Estimation of the role of global biological filters in the geochemical migration of trace elements in the ocean: the marginal filter of the ocean,” Dokl. Earth Sci. 439(1), 981–985 (2011).

    Article  Google Scholar 

  • L. L. Demina and S. V. Galkin, “On the role of abiogenic factors in the bioaccumulation of heavy metals by the hydrothermal fauna of the Mid-Atlantic Ridge,” Oceanology 48(6), 784–797 (2008).

    Article  Google Scholar 

  • L. L. Demina and S. V. Galkin, “Polychaete Alvinella pompejana—Superthermophile and ‘Champion in Metals’” Priroda, No. 8, 14–21 (2010).

    Google Scholar 

  • L. L. Demina and S. V. Galkin, Trace Element Biogeochemistry in the Oceanic Abyssal Hydrothermal Ecosystems (GEOS, Moscow, 2013) [in Russian].

    Google Scholar 

  • L. L. Demina and A. P. Lisitzyn, “Role of global biological filters in geochemical migration of trace elements in the ocean: comparative estimation,” Dokl. Earth Sci. 449(2), 469–473 (2013).

    Article  Google Scholar 

  • L. L. Demina and I. A. Nemirovskaya, “Spatial distribution of microelements in the seston of the White Sea,” Oceanology 47(3), 360–372 (2007).

    Article  Google Scholar 

  • L. L. Demina, V. V. Gordeev, and L. S. Fomina, “Iron, manganese, zinc, and copper species in the river water and their changes in the river-sea water mixing zone of the Black, Azov, and Caspian seas,” Geokhimiya, No. 8, 1211–1229 (1978).

    Google Scholar 

  • L. L. Demina, S. V. Galkin, A. Yu. Lein, and A. P. Lisitsyn, “First data on microelemental composition of benthic organisms from the 9°50′ N hydrothermal field, East Pacific Rise,” Dokl. Earth Sci. 415A(6), 905–907 (2007).

    Article  Google Scholar 

  • L. L. Demina, V. V. Gordeev, S. V. Galkin, M. D. Kravchishina, and S. P. Aleksankina, “The biogeochemistry of some heavy metals and metalloids in the Ob River estuary-Kara Sea section,” Okeanology 50(5), 729–742 (2010).

    Article  Google Scholar 

  • L. L. Demina, N. G. Holm, S. V. Galkin, and A. Yu. Lein, “Concentration function of the deep-sea vent benthic organisms,” Cahier Biol. Mar. 51, 369–373 (2010).

    Google Scholar 

  • L. L. Demina, G. A. Leonova, V. A. Bobrov, and D. M. Martynova, “Trace elements in the planktonic organisms of the White Sea,” in White Sea System. Vol. 2. Water Succession and Atmosphere, Cryosphere, River Run-Off, and Biosphere Interacting with It, Ed. by A.P. Lisitzin and I.A. Nemirovskaya (Nauchnyi Mir, Moscow, 2012), pp. 683–709 [in Russian].

    Google Scholar 

  • L. L. Demina, N. G. Holm, S. V. Galkin, and A. Yu. Lein, “Some features of the trace metal biogeochemistry in the deep-sea hydrothermal vent fields (Menez Gwen, Rainbow, Broken Spur at the MAR and 9°50′ N at the EPR): a synthesis,” J. Mar. Syst. 126, 94–105 (2013).

    Article  Google Scholar 

  • R. A. Duce, P. S. Liss, J. T. Merrill, E. L. Atlas, et al., “The atmospheric input of trace species to the World Ocean,” Global Biogeochem. Cycles 5(3), 193–259 (1991).

    Article  Google Scholar 

  • J. M. Edmond, K. L. Von Damm, R. E. McDuff, and C. J. Measures, “Chemistry of hot springs on the East Pacific Rise and their affluent dispersal,” Nature, No. 2, 187–191 (1982).

    Google Scholar 

  • V. F. Gal’chenko, A. Yu. Lein, E. M. Galimov, and M. V. Ivanov, “Role of symbiont bacteria in feeding of invertebratae from zones of active submarine hydrothermal vents,” Okeanologiya 28(6), 1020–1031 (1988).

    Google Scholar 

  • A. V. Gebruk, P. Chevaldonne, T. Shank, R. A. Lutz, and R. C. Vrienhoek, “Deep-sea hydrothermal vent communities of the Logatchev area (14°45′ N, Mid-Atlantic Ridge): Diverse biotope and high biomass,” J. Mar. Biol. Ass. 80, 383–394 (2000).

    Article  Google Scholar 

  • C. R. German and M. V. Angel, “Hydrothermal fluxes of metals to the oceans: a comparison with anthropogenic discharge,” in Hydrothermal Vents and Processes, Ed. by L.M. Parson, C.L. Walker, and D.R. Dixon, Geol. Soc. London, Sp. Publ. 87, 365–372 (1995).

    Google Scholar 

  • C. R. German, A. M. Thurnherr, J. Knoery, J. -L. Charlou, P. Jean-Baptiste, and H. N. Edmonds, “Heat volume and chemical fluxes from submarine venting: a synthesis of results from the Rainbow hydrothermal field, 36° N MAR,” Deep-Sea Res. 57, 518–527 (2010).

    Article  Google Scholar 

  • V. V. Gordeev, River Run-Off into the Ocean and Its Geochemistry (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  • V. V. Gordeev, Geochemistry of the River-Sea System and Its Role in Ocean Geochemistry (I.P. Matushkina I.I., Moscow, 2012) [in Russian].

    Google Scholar 

  • R. K. Kudinova-Pasternak, “On problem of interaction of biofilters with aqueous masses,” Vopr. Geograf., 26–34 (1951).

    Google Scholar 

  • G. A. Leonova and V. A. Bobrov, Geochemical Role of Plankton of the Siberian Continental Basins in the Accumulation and Biosedimentation of Trace Elements (GEO, Novosibirsk, 2012) [in Russian].

    Google Scholar 

  • G. A. Leonova, V. A. Bobrov, V. P. Shevchenko, and A. A. Prudkovskii, “Comparative analysis of the microelemental composition of seston and bottom sediments in the White Sea,” Dokl. Earth Sci. 406(1), 136–140 (2006).

    Article  Google Scholar 

  • M. A. Levitan, K. V. Syromyatnikov, and T. G. Kuz’mina, “Lithological and geochemical characteristics of recent and Quaternary sedimentation in the Arctic Ocean,” Geochem. Int. 50(7), 559–573 (2012).

    Article  Google Scholar 

  • A. P. Lisitzyn, Oceanic Sedimentation: Lilthology and Geochemistry (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  • A. P. Lisitzyn, “Biodifferentiation of matter in the ocean and sedimentary process,” in Biodifferentiation of Sedimentary Matter in Seas and Oceans (Rostov. Univ., Rostov, 1986), pp. 3–66 [in Russian].

    Google Scholar 

  • A. P. Lisitzyn, “Hydrothermal systems of the World Ocean-supply of endogenic matter,” in Hydrothermal Systems and Sedimentary Formations of the Atlantic Mid-Ocean Ridges (Nauka, Moscow, 1993), pp. 147–246 [in Russian].

    Google Scholar 

  • A. P. Lisitzyn, “Marginal filters of oceans,” Oceanologiya 34(5), 735–747 (1994).

    Google Scholar 

  • A. P. Lisitzyn, Fluxes of Substance and Energy in the Outer and Inner Spheres of the Earth. Global Environmental Changes—2001, Ed. by N.A. Dobretsov and V.I. Kovalenko (Nauka, Novosibirsk, 2001) [in Russian].

  • A. P. Lisitzyn, “Sediment fluxes, natural filtration, and sedimentary systems of a living ocean,” Geol. Geophys. 45(1), 12–43 (2004).

    Google Scholar 

  • A. P. Lisitzyn, “Marginal filters and biofilters of the World ocean,” in Oceanology at the Start of the 21th Century (Nauka, Moscow, 2008), pp. 159–224 [in Russian].

    Google Scholar 

  • A. P. Lisitzyn, “Marine ice-rafting as a new type of sedimentogenesis in the Arctic and novel approaches to studying sedimentary processes,” Geol. Geophys. 51(1), 12–47 (2010).

    Article  Google Scholar 

  • A. P. Lisitsyn and M. E. Vinogradov, “Global tendencies of life distribution in ocean and their reflection in bottom sediments,” Izv. Akad. Nauk SSSR, Ser. Biol., No. 4, 5–24 (1982).

    Google Scholar 

  • J. M. Martin and H. L. Windom, “Present and future roles of ocean margins in regulating marine biogeochemical cycles of trace elements,” in Ocean Margin Processes in Global Change, Ed. by R.F.C. Mantoura, J.-M. Martin, and R. Wollast (John Wiley & Sons, 1991), pp. 45–67.

    Google Scholar 

  • J. D. Milliman, “Present and future roles of ocean margins in regulating marine biogeochemical cycles of trace elements,” in Ocean Margin Processes in Global Change, Ed. by R.F.C. Mantoura, J.-M. Martin, and R. Wollast (John Wiley & Sons, 1990), pp. 45–67.

    Google Scholar 

  • T. I. Moiseenko, Theoretical Principles of Normalization of Anthropogenic Loads on the Subarctic Basins (KNTs RAN, Apatity, 1997) [in Russian].

    Google Scholar 

  • S. A. Ostroumov, “On the biotic self-purification of Aquatic ecosystems: elements of theory,” Dokl. Biol. Sci. 396, 206–211 (2004).

    Article  Google Scholar 

  • M. R. Palmer and J. M. Edmond, “The strontium budget of the modern ocean,” Earth Planet. Sci. Lett. 92(1), 11–26 (1989).

    Article  Google Scholar 

  • V. I. Peresypkin, “Paraffin carbohydrate in hydrothermal deposits of the Guimas Basin, Californian Bay,” in Proceedings of 18th International Conference (School) on Marine Geology of Seas and Oceans, Moscow, Russia, 2007 (GEOS, Moscow, 2007), Vol. 2, p. 62 [in Russian].

    Google Scholar 

  • R. Raiswell and D. E. Canfield, “The iron biogeochemical cycle past and present,” Geochem. Persp. 1 (2012).

  • E. A. Romankevich, Geochemistry of Organic Matter in the Ocean (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  • E. A. Romankevich, “Living substance of the Earth: biogeochemical aspects of the problem,” Geokhimiya, No. 2, 292–306 (1988).

    Google Scholar 

  • E. A. Romankevich, A. A. Vetrov, and V. I. Peresypkin, “Organic matter of the World Ocean,” Russ. Geol. Geophys. 50(4), 291–299 (2009).

    Article  Google Scholar 

  • S. Sander and A. Koschinsky, “Metal flux from hydrothermal vents increased by organic complexation,” Nature Geosci. 4, 45–150 (2011).

    Article  Google Scholar 

  • P.-M. Sarradin, J.-C. Caprais, R. Riso, R. Kerouel, and A. Aminot, “Chemical environment of the hydrothermal mussel communities in the Lucky Strike and Menez Gwen vent fields, Mid-Anlantic Ridge,” Cahiers Biol. Mar. 40, 93–104 (1999).

    Google Scholar 

  • N. A. Shulga, V. I. Peresypkin, and I. A. Revel’skii, “Composition research of n-alkanes in the samples of hydrothermal deposits of the Mid-Atlantic Ridge by means of gas chromatography-mass spectrometry,” Oceanology 50(4), 479–487 (2010).

    Article  Google Scholar 

  • V. N. Stepanov, “Main sizes of the World Ocean and its most important parts,” Okeanologiya, No. 1, 12–21 (1961).

    Google Scholar 

  • A. Sumoondur, A. Koschinsky, and C. Osterlag-Henning, “Dissolved organic compounds in hydrothermal fluids from the Mid-Atlantic Ridge: implication for the behavior of metals at vent sites,” Geophys. Res. Abstr. 8, 6642–6645 (2006).

    Google Scholar 

  • W. G. Sunda, “Trace metal interactions with marine phytoplankton,” Biol. Oceanogr. 6, 411–442 (1989).

    Google Scholar 

  • V. I. Vernadsky, Biosphere (Nauch. khim.-tekhn. izd., Leningrad, 1926) [in Russian].

    Google Scholar 

  • V. I. Vernadsky, Living Substance (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  • V. I. Vernadsky, “Problems of biogeochemistry,” Tr. Biogeokhim Lab. AN SSSR 16, (Nauka, Moscow, 1980).

    Google Scholar 

  • M. E. Vinogradov, “Evolution of pelagic communities and biotic balance,” in Oceanology at the Start of the 21th Century (Nauka, Moscow, 2008), pp. 257–293 [in Russian].

    Google Scholar 

  • M. E. Vinogradov and A. P. Lisitzyn, “Global trends in life distribution in the ocean and their reflection in the composition of bottom sediments. Tendencies in distribution of plankton and benthos in the ocean,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 3, 5–28 (1981).

    Google Scholar 

  • M. Yücel, A. Gartman, C. S. Chan, and G. W. Luther, “Hydrothermal vents as a kinetically stable pyrite (FeS2) nanoparticle source to the ocean,” Nature Geosci. 4, 367–371 (2011). doi:10.1038/ngeo1148.

    Article  Google Scholar 

  • L. A. Zenkevich, Z. N. Filatova, and G. M. Belyaev, et al., “Quantitative distribution of zoobenthos in the World Ocean,” Byul. Mosk. O-va Ispyt. Prir. Otd. Biol. 76(3), 127–156 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Demina.

Additional information

Original Russian Text © L.L. Demina, 2015, published in Geokhimiya, 2015, No. 3, pp. 234–251.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demina, L.L. Quantification of the role of organisms in the geochemical migration of trace metals in the ocean. Geochem. Int. 53, 224–240 (2015). https://doi.org/10.1134/S0016702915030040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702915030040

Keywords

Navigation