Geochemistry International

, Volume 53, Issue 3, pp 241–252 | Cite as

Geochemistry of grass biocenoses: Biogenic cycles of chemical elements at contamination of the environment with heavy metals

  • V. S. Bezel’Email author
  • T. V. Zhuikova
  • V. A. Gordeeva


The paper addresses the involvement of grass communities in biogenic cycles of chemical elements (Zn, Cu, Pb, Cd, Mn, Co, Cr, Ni, and Fe). Both the species composition and the suprasoil phytomass of phytocenoses in the Central Urals are modified in a gradient of contamination with heavy metals. The bioproductivity and subsequent mineralization of plant remnants are discussed with reference to two soil types that differ in agrochemical parameters. The contribution of agrobotanical groups to the biological exchange of chemical elements is proved to be controlled not only by the volume of annually dying suprasoil biomass but also by the intensity of processes mineralizing plant remnants in the contamination gradient. This modifies the cycles of chemical elements in natural contaminated biocenoses. The reaction of grass communities on environmental contamination can be viewed as partial counterbalancing of the adverse effect of chemical stress via maintaining a high enough level of the biological exchange of chemical elements.


heavy metals chemical contamination of environment biogeochemical cycles grass biocenoses grass phytocenoses bioproductivity mineralizing processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. V. A. Alekseenko, Landscape and Environmental Geochemistry (Nauka, Moscow, 1990) [in Russian].Google Scholar
  2. E. Baath, “Effect of heavy metals in soil on microbialprocesses and populations (a review),” Water, Air, Soil Pollut. 47(3–4), 335–379 (1989).CrossRefGoogle Scholar
  3. M. P. Berg, G. Ekbohm, B. Soderstrom, and H. Staaf, “Reduction of decomposition rate of Scots pineneedle litter due to heavy-metal pollution,” Water, Air, Soil Pollut. 59, 165–177 (1991).CrossRefGoogle Scholar
  4. V. S. Bezel’, Ecological Toxicology: Population and Biocoenotic Aspects (Goshchitskii, Yekaterinburg, 2006) [in Russian].Google Scholar
  5. V. S. Bezel’ and T. V. Zhuikova, “Chemical pollution: transfer of chemical elements to the aboveground phytomass of herbaceous plants,” Russ. J. Ecol. 38(4), 238–246 (2007).CrossRefGoogle Scholar
  6. I. Chew, J. P. Obbard, and R. R. Stanforth, “Microbial cellulose decomposition in soils from a rifle range contaminated with heavy metals,” Environ. Pollut. 111(3), 367–375 (2001).CrossRefGoogle Scholar
  7. K. Dmowski and M. A. Karalewski, “Cumulation of zinc, cadmium, and lead in invertebrates and in some vertebrates according to the degree of an area contamination,” Ekologia polska 27(2), 333–349 (1979).Google Scholar
  8. B. Freedman and T. C. Hutchinson, “Effect of smelter pollutants on forest leaf litter decomposition near a nickel-copper smelter at Sudbury, Ontario,” Can. J. Botany 58(15), 1722–1736 (1980).CrossRefGoogle Scholar
  9. H. M. Grimshaw, J. D. Ovington, M. M. Betts, and J. A. Gibb, “The mineral content of birds and insects in plantations of Pinus sylvestri,” L. Oikos 9(1), 26–34 (1958).CrossRefGoogle Scholar
  10. V. B. Il’in, Heavy Metals in the Soil-Plant System (Nauka, Novosibirsk, 1991) [in Russian].Google Scholar
  11. I. B. Ivshina, L. V. Kostina, T. N. Kamenskikh, V. A. Zhuikova, T. V. Zhuikova, and V. S. Bezel’, “Seasonal dynamics of spatial distribution of celluloselithic activity of soil microflora under atmospheric pollution conditions,” Ekologiya, No. 6, 427–437 (2014).Google Scholar
  12. S. Yu. Kaigorodova, T. V. Zhuikova, V. A. Zhuikova, V. S. Bezel’, and I. B. Ivshina, “Characteristics of anthropogenically degraded soils and microbic complex of the Nizhnii Tagil industrial cluster,” in Modern Problems of Soil Pollution, Ed. by D.V. Ladonin and G.V. Motuzova (MGU, Moscow, 2013), pp. 226–230 [in Russian].Google Scholar
  13. Yu. D. Kharitonov and T. G. Boikov, “Biomass of underground plant organs in steppe phytocenoses of Western Transbaikalia,” Russ. J. Ecol. 30(5), 313–316 (1999).Google Scholar
  14. I. Khavezov and D. Tsalev, Atomic Absorption Analysis (Khimiya, Leningrad, 1983) [in Russian].Google Scholar
  15. G. I. Kozlova, “Production of onland and underground parts of flood meadow phytocenosis in diverse ecological conditions,” in Modern Problems of Soil Pollution, Ed. by N.I. Bazilevich and L.E. Rodina (Nauka, Leningrad, 1971), pp. 92–97 [in Russian].Google Scholar
  16. L. Lindquist and M. Block, “Influence of life history and sex on metal accumulation in two beetles species (Insecta: Coleoptera),” Bul. Environ. Contam. Toxicol. 58(4), 518–522 (1997).CrossRefGoogle Scholar
  17. Methodical Instruction on the Heavy Metal Determination in Soils of Agricultural Lands and Products of Plant Cultivation, 2nd Edition (TsINAO, Moscow, 1992) [in Russian].Google Scholar
  18. E. D. Miroshnichenko, “Decomposition of dead plant mass,” in Productivity of Meadow Communities, Ed. by V. M. Ponyatovskaya (Nauka, Leningrad, 1978) [in Russian].Google Scholar
  19. E. K. Parshina, “Decomposition of plant matter in the forest tundra,” Sib. Ekol. Zh., No. 5, 781–787 (2007).Google Scholar
  20. A. D. Pokarzhevskii, N. V. Van Straalen, Zh. V. Filimonova, A. S. Zaitsev, and R. O. Butovskii, “Trophic structure of ecosystems and ecotoxicology of soil organisms,” Russ. J. Ecol., 31(3), 190–197 (2000).CrossRefGoogle Scholar
  21. L. V. Pomazkina, L. G. Kotova, and E. V. Lubnina, Biogeochemical Monitoring and Assessment of Operating Regimes of Agrosystem on the Technogenically Polluted Soils (Nauka, Novosibirsk, 1999) [in Russian].Google Scholar
  22. L. V. Pomazkina, L. G. Kotova, S. Yu. Zorina, A. V. Rybakova, A. Yu. Tikhonov, “Carbon dioxide emission as affected by the properties of arable soils polluted with fluorides,” Euras. Earth Sci. 41(2), 202–209 (2008).Google Scholar
  23. A. V. Roginskaya and O. B. Kazantseva, “Seasonal dynamics of plant mass in tall grass communities of the Salair Range”, Ecology, (3), 1–5 (1982).Google Scholar
  24. M. S. Shalyt, “Vegetative propagation and vegetative reproduction of vascular plants and the methods of their investigation,” in Field Geobotanics, Ed. by A.A. Korchagin et al. (Izdatel’stvo Akademii Nauk SSSR, Moscow, 1960), Vol. 2, pp. 163–205 [in Russian].Google Scholar
  25. S. S. Shvarts, Ecological Tendencies of Evolution (Nauka, Moscow, 1980) [in Russian].Google Scholar
  26. V. B. Sochava, V. V. Lipatova, and A. A. Gorshkova, “Experience of the allowance for complete productivity of the onland part of plant cover,” Botan. Zh., 47(4), 473–484 (1962).Google Scholar
  27. A. A. Titlyanova, Biological Cycle of Carbon in Grassy Biogeocoenoses (Nauka, Novosibirsk, 1977) [in Russian].Google Scholar
  28. A. A. Titlyanova, Biological Cycle of Nitrogen and Ash Elements in the Grassy Biogeocoenoses (Nauka, Novosibirsk, 1979) [in Russian].Google Scholar
  29. V. I. Vernadskii, Living Matter (Nauka, Moscow, 1978) [in Russian].Google Scholar
  30. E. L. Vorobeichik, “Change of the spatial structure of destruction process under conditions of atmospheric pollution of forest ecosystems,” Izv. Ross. Akad. Nauk. Ser. Biol., No. 3, 368–379 (2002).Google Scholar
  31. E. L. Vorobeichik, “Seasonal changes in the spatial distribution of cellulolytic activity of soil microflora under conditions of atmospheric pollution,” Russ. J. Ecol. 38(6), 398–407 (2007).CrossRefGoogle Scholar
  32. E. L. Vorobeichik and P. G. Pishchulin, “Effect of trees on the decomposition rate of cellulose in soils under industrial pollution,” Euras. Soil Sci. 44(5), 547–560 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. S. Bezel’
    • 1
    Email author
  • T. V. Zhuikova
    • 1
    • 2
  • V. A. Gordeeva
    • 2
  1. 1.Institute of Plant and Animal Ecology, Ural DivisionRussian Academy of SciencesYekaterinburgRussia
  2. 2.Faculty of Natural Sciences, Mathematics, and InformaticsNizhnii Tagil State Social-Pedagogical AcademyNizhnii TagilRussia

Personalised recommendations