Geochemistry International

, Volume 52, Issue 13, pp 1207–1226 | Cite as

Highly diluted aqueous solutions: Formation of nano-sized molecular assemblies (nanoassociates)

Article

Abstract

Based on experimental data obtained using a combination of physicochemical techniques (dynamic light scattering, microelectrophoresis, conductivity, surface tension, pH, dielectric constant, polarimetric measurements, atomic force microscopy, and UV and EPR spectroscopy) a previously unknown fundamental phenomenon was discovered: the formation of nanometer-sized molecular assemblies (nanoassociates) in low-concentration aqueous solution, which were prepared by serial dilution. The formation and rearrangement of nanoassociates in solutions of different concentrations can be considered as a major factor controlling the physicochemical and, probably, specific biological properties of diluted aqueous solutions. The formation of nanoassociates is triggered by the solute under certain conditions, the most important of which are the specific solute structure, the presence of external physical fields (geomagnetic and low-frequency electromagnetic), and the solution preparation procedure.

Keywords

self-organization physicochemical properties biological effects aqueous solutions low concentrations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. B. Burlakova, A. A. Konradov, and E. L. Mal’tseva, “Operation of supersmall doses of biologically active substances and low-intensity physical factors,” Khim. Fiz. 2(22), 21–40 (2003).Google Scholar
  2. 2.
    V. N. Bingi, Principles of Electromagnetic Biophysics (Fizmatlit, Moscow, 2011) [in Russian].Google Scholar
  3. 3.
    V. N. Bingi, Magnetobiology: Experiments and Models (Milta, Moscow, 2002) [in Russian].Google Scholar
  4. 4.
    I. P. Ashmarin, E. P. Karazeeva, and T. V. Lelekova, “On the problem of the efficiency of supersmall doses of biologically active compounds,” Zh. Vses. Khim. O-va im. D.I. Mendeleeva, No. 5, 21–31 (1999).Google Scholar
  5. 5.
    Hormesis: a Revolution in Biology, Toxicology and Medicine (Springer, New York, 2009).Google Scholar
  6. 6.
    N. P. Pal’mina, E. L. Mal’tseva, E. I. Pynzar’, and E. B. Burlakova, “Modification of the activity of protein kinase C by ligands in supersmall concentrations. Role of protein kinase C and its effects in peroxide oxidation,” Zh. Vses. Khim. O-va im. D. I. Mendeleeva, No. 5, 55–63 (1999).Google Scholar
  7. 7.
    N. L. Shimanovskii, M. A. Epinetov, and M. Ya. Mel’nikov, Molecular and Nano-Pharmacology (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar
  8. 8.
    V. V. Bulatov, T. Kh. Khokhoev, V. V. Dikii, S. V. Zaonegin, and V. N. Babin, “Problem of small and supersmall doses in toxicology. Fundamental and applied aspects,” Zh. Vses. Khim. O-va im. D. I. Mendeleeva, No. 6, 58–62 (2002).Google Scholar
  9. 9.
    E. S. Ikhalainen, S. E. Kondakov, M. Ya. Mel’nikov, O. S. Prokoptseva, and K. G. Fedorenko, “Kinetic approaches in developing drugs on the basis of nonspecific biosensors,” in 3rd Emanuel Readings “Oxidation, Oxidizing Stress, and Antioxidants” (RUDN, Moscow, 2010), pp. 130–163 [in Russian].Google Scholar
  10. 10.
    Sh. Lo and V. Li, “Nanostructures in extradiluted aqueous solutions,” Zh. Vses. Khim. O-va im. D. I. Mendeleeva 43(5), 40–48 (1999).Google Scholar
  11. 11.
    S. Y. Lo, X. Geng, and D. Gann, “Evidence for the existence of stable-water-clusters at room temperature and normal pressure,” Phys. Lett. A, No. 373, 3872–3876 (2009).Google Scholar
  12. 12.
    S. B. Savvin, R. K. Chernova, and S. N. Shtykov, Surface-Active Substance (Surfactants) (Nauka, Moscow, 1991) [in Russian].Google Scholar
  13. 13.
    S. S. Vijayan, C. Ramachandran, and D. R. Woods, “Bulk and interfacial physical properties of aqueous solutions of sodium lauryl sulphate: Part IV: Dilute aqueous solution behavior by electron spin resonance studies and by pH and surface tension measurements,” Can. J. Chem. Eng. 58, 485–496 (1980).CrossRefGoogle Scholar
  14. 14.
    S. I. Sivakova, E. Yu. Korableva, and L. V. Lanshina, “Light scattering in diluted aqueous solutions of sodium dodecyl sulfate,” Zh. Fiz. Khim. 69(6), 1010–1014 (1995).Google Scholar
  15. 15.
    A. I. Rusanov and A. G. Nekrasov, “One more extreme near the critical micelle concentration: Optical activity,” Langmuir 26(17), 13767–13769 (2010).CrossRefGoogle Scholar
  16. 16.
    A. G. Nekrasov and A. I. Rusanov, “Aggregative optical activity of colloidal surfactants,” Colloid. J. 73(4), 517–522 (2011).CrossRefGoogle Scholar
  17. 17.
    V. I. Klopov, A. M. Kolker, and G. A. Krestov, “Heat capacity of HCl solutions in water and 30% aqueous solutions of isopropyl alcohol in the region of 0.01 molal concentrations of electrolyte at 25°C,” Zh. Fiz. Khim. 46(8), 2155–2159 (1972).Google Scholar
  18. 18.
    L. V. Chernykh, “Variations of properties of diluted aqueous electrolytic solutions,” Probl. Sovrem. Khim. Koord. Soed., No. 8, 108–121 (1984).Google Scholar
  19. 19.
    R. Roy, W. A. Tiller, I. Bell, and M. R. Hoover, “The structure of liquid water; novel insights from materials research; potential relevance to homeopathy,” Mater. Res. Innovation Online, 577–608 (2005).Google Scholar
  20. 20.
    N. O. Mchedlov-Petrossyan, V. K. Klochkov, and G. V. Andrievsky, “Colloidal dispersions of fullerene C60 in water: Some properties and regularities of coagulation by electrolytes,” J. Chem. Soc., Faraday Trans., 93, 4343–4346 (1997).CrossRefGoogle Scholar
  21. 21.
    G. V. Andrievsky, V. I. Bruskov, A. A. Tykhomyrov, and S. V. Gudkov, “Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostructures in vitro and in vivo,” Free Radical Biol. Med. 47, 786–793 (2009).CrossRefGoogle Scholar
  22. 22.
    M. V. Avdeev, A. A. Khokhryakov, T. V. Tropin, G. V. Andrievsky, V. K. Klochkov, L. I. Derevyanchenko, L. Rosta, V. M. Garamus, V. B. Priezzhev, M. V. Korobov, and V. L. Aksenov, “Structural features of molecular-colloidal solutions of C60 fullerenes in water by small-angle neutron scattering,” Langmuir 20, 4363–4368 (2004).CrossRefGoogle Scholar
  23. 23.
    G. A. Masyagutova, G. Ya. Maistrenko, A. V. Mamykin, and V. P. Kazakov, “Features of chemiluminescence kinetics in the reaction of uranium(IV) with xenon difluoride in the ultralow concentration range,” Dokl. Phys. Chem. 409(6), 247–250 (2006).CrossRefGoogle Scholar
  24. 24.
    I. A. Yamskov, V. P. Yamskova, A. N. Danilenko, Z. S. Klemenkova, B. G. Antipov, F. R. Chernikov, M. M. Gusynina, and E. Yu. Rybakova, “Experimental evidence for role of physicochemical factors in mechanism of biological action of supersmall doses,” Zh. Vses. Khim. O-va im. D.I. Mendeleeva 43(5), 34–39 (1999).Google Scholar
  25. 25.
    V. P. Yamskova and I. A. Yamskov, “Mechanism of biological action of physicochemical factors in supersmall doses,” Zh. Vses. Khim. O-va im. D.I. Mendeleeva 43(2), 74–79 (1999).Google Scholar
  26. 26.
    V. S. Skripnikova, M. S. Krasnov, B. B. Berezin, T. A. Babushkina, A. V. Borisenko, B. A. Izmailov, V. P. Yamskova, and I. A. Yamskov, “Low-molecular-weight sclera protein biologically active at ultralow doses,” Dokl. Biochem. Biophys. 417, 346–347 (2007).CrossRefGoogle Scholar
  27. 27.
    V. I. Lobyshev, M. S. Tomkevich, and I. Yu. Petrushanko, “Experimental study of potentiated aqueous solutions,” Biophysics 3(50), 416–420 (2005).Google Scholar
  28. 28.
    I. F. Dolmanova, G. A. Zolotova, O. V. Kamentseva, and M. V. Koroleva, “Kinetic method of determination of microamounts of glycerol trinitrate,” Zh. Analit. Khimii 38(8), 1484–1488 (1983).Google Scholar
  29. 29.
    B. V. Deryagin and N. V. Churaev, Water in Dispersed Systems (Khimiya, Moscow, 1989) [in Russian].Google Scholar
  30. 30.
    V. I. Lobyshev, “Water as a sensor of weak physical and chemical effects,” Zh. Vses. Khim. O-va im. D.I. Mendeleeva 51(1), 107–114 (2007).Google Scholar
  31. 31.
    A. N. Smirnov and A. V. Syroeshkin, “Supramolecular water complexes,” Zh. Vses. Khim. O-va im. D.I. Mendeleeva 48(2), 125–135 (2004).Google Scholar
  32. 32.
    D. M. Kuznetsov, A. N. Smirnov, and A. V. Syroeshkin, “Acoustic emission during phase transformations in an aqueous environment,” Zh. Vses. Khim. O-va im. D.I. Mendeleeva 52(1), 114–121 (2008).Google Scholar
  33. 33.
    V. M. Byakov, L. V. Lanshina, O. P. Stepanova, and S. V. Stepanov, “The nanoheterogeneous structure of aqueous solutions of n-propanol,” Russ. J. Phys. Chem. A 83(2), 214–219 (2009).CrossRefGoogle Scholar
  34. 34.
    N. A. Kalinina, I. G. Silinskaya, A. P. Filippov, A. M. Bochek, E. N. Vlasova, V. P. Sklizkova, and V. V. Kudryavtsev, “Study of structuring in mixed solvents by scattering of polarization light,” Vysokomol. Soedin., Ser. A. 49(3), 473–480 (2007).Google Scholar
  35. 35.
    D. Subramanian and M. A. Anisimov, “Resolving the mystery of aqueous solutions of tertiary butyl alcohol,” J. Phys. Chem. B., No. 115, 9179–9183 (2011).Google Scholar
  36. 36.
    D. Subramanian, D. A. Ivanov, I. K. Yudin, M. A. Anisimov, and J. V. Sengers, “Mesoscale inhomogeneities in aqueous solutions of 3-methylpyridine and tertiary butyl alcohol,” J. Chem. Eng. Data 56, 1238–1248 (2011).CrossRefGoogle Scholar
  37. 37.
    P. Bharmoria, H. Gupta, V. P. Mohandas, P. K. Ghosh, and A. Kumar, “Temperature invariance of NaCl solubility in water: inferences from salt-water cluster behavior of NaCl, KCl, and NH4Cl,” J. Phys. Chem. B. 116, 11712–11719 (2012).CrossRefGoogle Scholar
  38. 38.
    D. Hagmeyer, J. Ruesing, T. Fenske, H.-W. Klein, C. Schmuck, W. Schrader, M. E. M. da Piedade, and M. Epple “Direct experimental observation of the aggregation of a-amino acids into 100–200 nm clusters in aqueous solution,” RSC Advances, No. 2, 4690–4696 (2012).Google Scholar
  39. 39.
    L. Montagnier, J. Aissa, S. Ferris, J.-L. Montagnier, and C. Lavallee, “Electromagnetic signals are produced by aqueous nano structures derived from bacterial DNA sequences,” Interdiscip. Sci. Comput. Life Sci., No. 1, 81–90 (2009).Google Scholar
  40. 40.
    L. Montagnier, J. Aissa, C. Lavallee, M. Mbamy, J. Varon, and H. Chenal, “Electromagnetic detection of HIV DNA in the blood of AIDS patients treated by antiretroviral therapy,” Interdiscip. Sci. Comput. Life Sci., No. 1, 245–253 (2009).Google Scholar
  41. 41.
    N. Marchettini, E. Del Giudice, V. Voeikov, and E. Tiezzi, “Water: a medium where dissipative structures are produced by a coherent dynamics,” J. Theor. Biol. 265, 511–516 (2010).CrossRefGoogle Scholar
  42. 42.
    N. A. Bulienkov, “The role of modular design in study of the self-organization of biological systems,” Biophysics 50(5), 811–831 (2005).Google Scholar
  43. 43.
    T. Yinnon and C. Yinnon, “Domains of solvated ions in aqueous solutions, their characteristics and impact on electric conductivity: theory and experimental evidence,” Modern Phys. Lett. B 26(2), 1150006–1150019 (2012).CrossRefGoogle Scholar
  44. 44.
    T. Yinnon and V. Elia, “Dynamics in perturbed very dilute aqueous solutions: theory and experimental evidence,” Int. J. Modern Phys. B 27(5), 1350005–1350018 (2013).CrossRefGoogle Scholar
  45. 45.
    J. Zheng and G. H. Pollack, “Long-range forces extending from polymer-gel surfaces,” Phys. Rev. 68, 0314081–0314087 (2003).Google Scholar
  46. 46.
    B. Chai, J. Zheng, Q. Zhao, and G. H. Pollack, “Spectroscopic studies of solutes in aqueous solution,” J. Phys. Chem. A 112, 2242–2247 (2008).CrossRefGoogle Scholar
  47. 47.
    E. Nagornyak, H. Yoo, and G. H. Pollack, “Mechanism of attraction between like-charged particles in aqueous solution,” Soft Matter 5, 3850–3857 (2009).CrossRefGoogle Scholar
  48. 48.
    H. Yoo, R. Paranji, and G. H. Pollack, “Impact of hydrophilic surfaces on interfacial water dynamics probed with NMR spectroscopy,” J. Phys. Chem. Lett. 2, 532–536 (2011).CrossRefGoogle Scholar
  49. 49.
    S. Samal and K. Geckeler, “Unexpected solute aggregation in water on dilution,” Chem. Commun., 2224–2225 (2001).Google Scholar
  50. 50.
    M. Sedlak, “Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: I. Light scattering characterization,” J. Phys. Chem. B., No. 110, 4329–4338 (2006).Google Scholar
  51. 51.
    M. Sedlak, “Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids: II. Kinetics of the formation and long-time stability,” J. Phys. Chem. B., No. 110, 4339–4345 (2006).Google Scholar
  52. 52.
    M. Sedlak, “Large-scale supramolecular structure in solutions of low molar mass compounds and mixtures of liquids. III. Correlation with molecular properties and interactions,” J. Phys. Chem. B., No. 110, 13976–13984 (2006).Google Scholar
  53. 53.
    M. Sedlak and D. Rak, “Large-scale inhomogeneities in solutions of low molar mass compounds and mixtures of liquids: supramolecular structures or nanobubbles?,” J. Phys. Chem. B., No. 117, 2495–2504 (2013).Google Scholar
  54. 54.
    S. M. Pershin, “Paradox of A.I. Konovalov as an indicator of fundamental regularities,” in Proceedings of International Conference on Structure of Water: Physical and Biological Aspects (St. Petersburg, 2013), pp. 46–48 [in Russian].Google Scholar
  55. 55.
    A. A. Khamzin and R. R. Nigmatullin, “Thermodynamic and magnetic properties of linear spin complexes of ortho-water molecules,” Dokl. Phys. Chem. 452(2), 247–250 (2013).CrossRefGoogle Scholar
  56. 56.
    E. B. Burlakova, “Bioantioxidants,” Zh. Vses. Khim. O-va im. D. I. Mendeleeva 51(1), 3–11 (2007).Google Scholar
  57. 57.
    A. I. Konovalov, I. S. Ryzhkina, L. I. Murtazina, A. P. Timosheva, R. R. Shagidullin, A. V. Chernova, L. V. Avvakumova, and S. G. Fattakhov, “Supramolecular systems on the basis of dihydrate of melamine salt of bis(oxymethyl)phosphine acid (melaphen) and surfactants. Communication 1. Structure and self-association of melaphen in water and chloroform,” Izv. Akad. Nauk, Ser. Khim., No. 6, 1207–1214 (2008).Google Scholar
  58. 58.
    I. S. Ryzhkina, “Nano-sized supramolecular systems on the basis of melamine salt of bis(oxymethyl)phosphine acid: physicochemical properties and biological activity,” in Proceedings of 4th International Symposium on Mechanisms of Action of Supersmall Doses (RUDN, Moscow, 2008), pp. 97–98 [in Russian].Google Scholar
  59. 59.
    I. S. Ryzhkina, L. I. Murtazina, Yu. V. Kiseleva, and A. I. Konovalov, “Properties of supramolecular nanoassociates formed in aqueous solutions of biologically active compounds in low or ultra-low concentrations,” Dokl. Phys. Chem. 428(2), 196–200 (2009).CrossRefGoogle Scholar
  60. 60.
    I. S. Ryzhkina, L. I. Murtazina, Yu. V. Kiseleva, and A. I. Konovalov, “Supramolecular systems based on amphiphillic derivatives of biologically active phenols: self-assembly and reactivity over a broad concentration range,” Dokl. Phys. Chem. 428(2), 201–205 (2009).CrossRefGoogle Scholar
  61. 61.
    I. S. Ryzhkina, Yu. V. Kiseleva, G. A. Zheltukhina, S. A. Okorochenkov, L. I. Murtazina, A. P. Timosheva, V. E. Nebol’sin, and A. I. Konovalov, “Relationship between self-organization, physicochemical properties, and biological activity of aqueous solutions of hemin derivatives,” Dokl. Phys. Chem. 440(1), 157–161 (2011).CrossRefGoogle Scholar
  62. 62.
    I. S. Ryzhkina, L. I. Murtazina, E. D. Sherman, Yu. N. Valitova, E. A. Kataev, and A. I. Konovalov, “Low-concentration aqueous solutions of macrocyclic pyridine-pyrrole compound: relationship between the parameters, physicochemical properties, and physiological activity of supramolecular nanosized associates,” Dokl. Phys. Chem. 433(2), 142–146 (2010).CrossRefGoogle Scholar
  63. 63.
    I. S. Ryzhkina, L. I. Murtazina, A. V. Nemtarev, V. F. Mironov, E. A. Kataev, and A. I. Konovalov, “Self-association of a phosphate receptor along and with a lipidomimetic in water: effect of receptor low concentrations on the catalytic activity of mixed systems,” Chem. Phys. Lett., No. 11, 247–250 (2011).Google Scholar
  64. 64.
    I. S. Ryzhkina, L. I. Murtazina, E. D. Sherman, M. E. Pantyukova, E. M. Masagutova, T. P. Pavlova, S. V. Fridland, and A. I. Konovalov, “Physicochemical substantiation of the hormetic response of biosystems for wastewater treatment to the action of solutions of N,N-diphenylguanidinium bis(hydroxymethyl)phosphinate,” Dokl. Phys. Chem. 438(1), 98–101 (2011).CrossRefGoogle Scholar
  65. 65.
    I. S. Ryzhkina, Yu. V. Kiseleva, L. I. Murtazina, N. P. Pal’mina, V. V. Belov, E. L. Mal’tseva, E. D. Sherman, A. P. Timosheva, and A. I. Konovalov, “Effect of α-tocopherol concentrations on the self-organization, physicochemical properties of solutions, and the structure of biological membranes,” Dokl. Phys. Chem. 438(2), 109–113 (2011).CrossRefGoogle Scholar
  66. 66.
    I. S. Ryzhkina, L. I. Murtazina, and A. I. Konovalov, “Action of the external electromagnetic field is the condition of nanoassociate formation in highly diluted aqueous solutions,” Dokl. Phys. Chem. 440(2), 201–204 (2011).CrossRefGoogle Scholar
  67. 67.
    I. S. Ryzhkina, L. I. Murtazina, A. V. Nemtarev, V. F. Mironov, and A. I. Konovalov, “Supramolecular water systems based on the new amphiphilic phosphacoumarines: synthesis, self-organization and reactivity,” Mend. Commun., No. 20, 148–150 (2010).Google Scholar
  68. 68.
    I. S. Ryzhkina, Yu. V. Kiseleva, L. I. Murtazina, and A. I. Konovalov, “Effect of ultralow concentrations and electromagnetic fields,” Dokl. Phys. Chem. 446(1), 153–157 (2012).CrossRefGoogle Scholar
  69. 69.
    I. S. Ryzhkina, Yu. V. Kiseleva, A. P. Timosheva, R. A. Safiullin, M. K. Kadirov, Yu. N. Valitova, and A. I. Konovalov, “Low-concentration aqueous solutions of an amphiphilic calix[4]resorcinarene derivative: self-organization, physicochemical properties, and biological activity under common and hypoelectromagnetic conditions,” Dokl. Phys. Chem. 447(1), 193–199 (2012).CrossRefGoogle Scholar
  70. 70.
    I. S. Ryzhkina, Yu. V. Kiseleva, L. I. Murtazina, O. A. Mishina, E. D. Sherman, and A. I. Konovalov, “Comparative study of self-organization and physicochemical properties of highly diluted aqueous solutions of phenol bioantioxidants,” Dokl. Phys. Chem. 447(1), 203–206 (2012).CrossRefGoogle Scholar
  71. 71.
    L. I. Murtazina, I. S. Ryzhkina, O. A. Mishina, Yu. V. Kiseleva, T. P. Pavlova, and S. V. Fridland, “Physicochemical substantiation of the use of diluted salicylic acid solution for intensification of biopurification of sewage waters,” Vestn. Kazan. Tekhnol. Univ., No. 16, 175–179 (2013).Google Scholar
  72. 72.
    N. P. Palmina, T. E. Chasovskaya, I. S. Ryzhkina, L. I. Murtazina, and A. I. Konovalov, “Water solutions of phenosan potassium salt: influence on biological membrane structure and conductivity,” Dokl. Biochem. Biophys. 429(1), 301–304 (2009).CrossRefGoogle Scholar
  73. 73.
    I. S. Ryzhkina, L. I. Murtazina, E. M. Masagutova, O. A. Mishina, T. P. Pavlova, S. V. Fridland, and A. I. Konovalov, “Self-organization of sodium chloride solutions in the absence and presence of a biologically active substance of low concentration under common and hypoelectromagnetic conditions,” Dokl. Phys. Chem. 446(6), 184–190 (2012).CrossRefGoogle Scholar
  74. 74.
    I. S. Ryzhkina, Yu. V. Kiseleva, L. I. Murtazina, Yu. N. Valitova, S. E. Solov’eva, L. M. Pilishkina, and A. I. Konovalov, “Nano-sized mixed aggregates of alkylated p-sulfonatokaliks[n]arenes and bromide cetyltrimethylammonium: self-organization and catalytic activity,” Izv. Akad. Nauk., Ser. Khim., No. 7, 1297–1305 (2010).Google Scholar
  75. 75.
    I. S. Ryzhkina, Yu. V. Kiseleva, O. A. Mishina, A. P. Timosheva, S. Yu. Sergeeva, A. N. Kravchenko, and A. I. Konovalov, “Low concentrations aqueous solutions of mebicar: the correlation of the self-organization, the physicochemical properties and biological activity,” Mend. Commun., 23, 262–264 (2013).CrossRefGoogle Scholar
  76. 76.
    I. S. Ryzhkina, Yu. V. Kiseleva, O. A. Mishina, L. I. Murtazina, S. N. Sudakova, S. N. Pod“yachev, and A. I. Konovalov, “Influence of spatial isomerism of tetrathiacalix[4]arene functionalized by hydrazide groups on self-organization and physicochemical properties of aqueous dimethyl sulfoxide solutions of low concentration,” Dokl. Phys. Chem. 453, 264–269 (2013).CrossRefGoogle Scholar
  77. 77.
    K. Holmberg, B. Jonsson, B. Kronberg, and B. Lindman, Surfactants and Polymers in Aqueous Solution (John Wiley & Sons, 2003).Google Scholar
  78. 78.
    Problems of Biosphere Origin and Evolution, Ed. by E.M. Galimov (Knizhnyi dom “Librokom”, Moscow, 2008) [in Russian].Google Scholar
  79. 79.
    A. A. Karelin, A. G. Globa, and V. S. Demidova, “ATP as a transmitter and amplifier of signals of growth factors and cytokines,” Usp. Biol. Khim. 40, 267–308 (2000).Google Scholar
  80. 80.
    N. L. Loseva, O. A. Kashina, A. Yu. Alyab’ev, L. Kh. Gordon, and V. I. Tribunskikh, “Study of the influence of phosphorus organic compounds on the growth and energetic processes of chlorella cells,” in Proceedings of All-Russia Seminar-Conference on the “State of Study and Prospects of Application of the Plant Growth Regulator of a New Generation “Melaphen” in Agriculture and Biotechnology, Kazan, Russia, 2006 (Kazan, 2006), pp. 12–26 [in Russian].Google Scholar
  81. 81.
    F. G. Karimova, S. A. Vanyushina, E. O. Fedina, and F. A. Mudarisov, “Melaphen-induced tyrosine phosphorylation of plant proteins,” in Proceedings of All-Russia Seminar-Conference on the “State of Study and Prospects of Application of Plant Growth Regulator of New Generation “Melaphen” in Agriculture and Biotechnology, Kazan, Russia, 2006 (Kazan, 2006), pp. 50–68 [in Russian].Google Scholar
  82. 82.
    L. I. Murtazina, Yu. V. Kiseleva, S. Yu. Sergeeva, I. S. Ryzhkina, and A. I. Konovalov, “Self-organization and physicochemical properties of highly diluted solutions of the potassic salt of adenosine-5′-triphosphate in natural and hypoelectromagnetic conditions,” in Transactions of International Conference on “Water Structure: Physical and Biological Aspects,” St. Peters-burg, Russia, 2013 (St. Petersburg, 2013), p. 39 [in Russian].Google Scholar
  83. 83.
    A. I. Konovalov, I. S. Ryzhkina, and L. I. Murtazina, Bulletin. Inventions. Useful Models, 24, (2010).Google Scholar
  84. 84.
    Yu. I. Khurgin, O. V. Lebedev, E. Yu. Maksareva, V. A. Zavizion, V. A. Kudryashova, M. M. Vorob’ev, G. A. Orekhova, and A. N. Danilenko, “Intermolecular interaction in aqueous mebicar solutions,” Izv. Akad. Nauk, Ser. Khim., No. 6, 1178–1179 (1995).Google Scholar
  85. 85.
    Yu. I. Khurgin, V. A. Kudryashova, V. A. Zavizion, and O. V. Betskii, “Millimeter absorption spectroscopy of aqueous systems,” Adv. Chem. Phys. 87, 483–545 (1994).Google Scholar
  86. 86.
    V. K. Abrosimov, E. V. Ivanov, and D. V. Batov, “Specific features of intermolecular interactions in aqueous solutions of methyl-substituted ureas,” Dokl. Phys. Chem. 407(2), 102–105 (2006).CrossRefGoogle Scholar
  87. 87.
    E. V. Ivanov, V. K. Abrosimov, and D. V. Batov, “Temperature influence on the H/D-isotope effects in the enthalpy of hydration of tetramethyl-bis-carbamide,” Izv. Akad. Nauk, Ser. Khim., No. 4, 1–3 (2006).Google Scholar
  88. 88.
    A. N. Kravchenko, I. S. Ryzhkina, Yu. V. Kiseleva, L. I. Murtazina, O. A. Mishina, E. D. Sherman, L. V. Anikina, Yu. B. Vikharev, and A. I. Konovalov, “Self-organization, physicochemical properties, and biological activity of aqueous low-concentration mebikar solutions in natural and hypogeomagnetic environments,” in Proceedings of 6th International Congress “Weak and Superweak Fields and Radiation in Biology and Medicine” (St. Petersburg, 2012), p. 78 [in Russian].Google Scholar
  89. 89.
    A. N. Kravchenko, L. V. Anikina, and I. S. Ryzhkina, “Pharmacological activity of mebikar in superlow doses,” in Proceedings of International Interdisciplinary Congress “Neiroscience for Medicine and Psychology”, Sudak, Russa, 2012 (Sudak, 2012), p. 218 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CenterRussian Academy of SciencesKazanRussia

Personalised recommendations