Geochemical features of the quaternary lamproitic lavas of Gaussberg Volcano, East Antarctica: Result of the impact of the Kerguelen plume

Abstract

Petrological-geochemical data were obtained on the lamproites of the Gaussberg Volcano located at the eastern Antarctic coast and compared with data on the magmatic rocks developed in the East Antarctica and Indian Ocean in relation with the Kerguelen plume. It was shown that the lamproites were derived from the ancient Gondwana lithosphere repeatedly modified at the early stages of its evolution, including significant enrichment in volatiles, lithophile elements, and radiogenic Sr and Pb isotopes.

The Gaussberg Volcano located on the eastern Antarctic continental margin falls in the distribution field of the Kerguelen plume, which formed 130 Ma within the incipient Indian Ocean and is continuing to operate at present, forming volcanic rocks of Heard Island in the last ka. Manifestations of alkaline magmatism at the Antarctic margin around 56 ka (Mt. Gaussberg) indicate a sublithospheric spreading of mantle plume in the southwestern direction.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. L. Anderson, “The sublithospheric mantle as the source of continental flood basalts: the case against the continental lithosphere and plume head reservoirs,” Earth Planet. Sci. Lett. 123, 269–280 (1994).

    Article  Google Scholar 

  2. 2.

    K. C. Condie, Mantle plumes and their record in Earth history (Cambridge University Press, Cambridge, 2001).

    Google Scholar 

  3. 3.

    V. Courtillot, A. Davaillie, J. Besse, and J. Stock, “Three distinct types of hotspots in the Earth’s mantle,” Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Article  Google Scholar 

  4. 4.

    S. F. Foley and G. A. Jenner, “Trace element partitioning in lamproitic magmas-the Gaussberg olivine leucitite,” Lithos 75, 19–38 (2004).

    Article  Google Scholar 

  5. 5.

    A. D. Edgar and R. H. Mitchell, “Ultra high pressure-temperature melting experiments on an SiO2-rich lamproite from Smoky Butte, Montana: derivation of siliceous lamproite magmas from enriched sources deep in the continental mantle,” J. Petrol. 38(6), 457–477 (1997).

    Article  Google Scholar 

  6. 6.

    R. H. Mitchell and A. R. Chakhmouradian, “Instability of perovskite in a CO2-rich environment: examples from carbonatite and kimberlite,” Can. Mineral. 36(4), 939–951 (1998).

    Google Scholar 

  7. 7.

    D. T. Murphy, K. D. Collerson, and B. S. Kamber, “Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments,” J. Petrol. 43(6), 981–1001 (2002).

    Article  Google Scholar 

  8. 8.

    Yu. S. Glebovsky, “Subice Brown-Gaussberg Ridge,” Byull. Soviet Antarct. Expedition, No. 10, 13–17 (1959).

    Google Scholar 

  9. 9.

    K. D. Collerson and M. T. McCulloch, “Nd and Sr isotope geochemistry of leucite-bearing lavas from Gaussberg, East Antarctica,” in Antarctica Earth Science (Aust. Acad. Sci., Canberra, 1983), pp. 676–680.

    Google Scholar 

  10. 10.

    J. W. Sheraton and A. Cundari, “Leucitites from Gaussberg, Antarctica,” Contrib. Mineral. Petrol. 71, 417–427 (1980).

    Article  Google Scholar 

  11. 11.

    R. J. Tingey, I. McDougall, and A. J. W. Gleadow, “The age and mode of formation of Gaussberg, Antarctica,” J. Geol. Soc. Austral. 30, 241–246 (1983).

    Article  Google Scholar 

  12. 12.

    O. S. Vyalov and V. S. Sobolev, “Gaussberg, Antarctica,” Int. Geol. Rev., No. 1 (7), 30–40 (1959).

    Google Scholar 

  13. 13.

    B. Stoll, K. P. Jochum, K. Herwig, M. Amini, M. Flanz, B. Kreuzburg, D. Kuzmin, M. Willbold, and J. Enzweiler, “An automated iridium-strip-heater for LA-ICP-MS bulk analysis of geological samples,” Geostand. Geoanalyt. Res. 32, 5–26 (2008).

    Article  Google Scholar 

  14. 14.

    A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, T. Nicholas, Sun-Lin. Arndt, L. V. Chung, F. A. Elliott, M. O. Frey, A. A. Garcia, V. S. Gurenko, A. C. Kamenetsky, N. A. Kerr, V. V. Krivolutskaya, I. K. Matvienkov, A. Nokogosian, I. A. Rocholl, N. M. Sigurdsson, M. Suschevskaya, and M. Teklay, “The amount of recycled crust in sources of mantle-derived melts,” Science, 316(5823), 412–417 (2007).

    Article  Google Scholar 

  15. 15.

    G. Manhes, J. E. Minster, and C. J. Allegre, “Comparative uranium-thorium-lead and rubidium-strontium study of the Severin amphoterite: consequences for early Solar System chronology,” Earth Planet. Sci. Lett. 39, 14–24 (1978).

    Article  Google Scholar 

  16. 16.

    K. R. Ludwig, “PBDAT: a computer program for processing Pb-U-Th isotope data, version 20,” U.S. Geol. Surv. Open-File Rept., No. 88-542, (1991).

    Google Scholar 

  17. 17.

    P. Richard, N. Schimizu, and C. J. Allegre, “143Nd/144Nd natural tracer: an application to oceanic basalts,” Earth Planet. Sci. Lett. 31, 269–278 (1976).

    Article  Google Scholar 

  18. 18.

    D. A. Golynsky and A. V. Golynsky, “Gaussberg rift-illusion or reality?,” in 10th International Symposium on Antarctic Earth Sciences. Extended Abstract 168, U.S. Geol. Surv. Nat. Acad.; USGS OF-2007-1047 (2011).

    Google Scholar 

  19. 19.

    S. R. Hart, J. Blusztajn, W. E. Lemasurier, and D. C. Rex, “Hobbs Coast Cenozoic volcanism: implications for the West Antarctic Rift System,” Chem. Geol. 139, 223–248 (1997).

    Article  Google Scholar 

  20. 20.

    G. H. Grantham, “Aspects of Jurassic magmatism and faulting in western Dronning Maud,” in Weddell Sea Tectonics and Gondwana Break-Up, Geol. Soc. Sp. Publ., London 108 63–71 (1996).

    Google Scholar 

  21. 21.

    H. Furnes, E. Vad, and H. Austrheim, “Geochemistry of basalt lavas from Vestfjella, Dronning Maud Land, Antarctica,” Lithos 20, 337–356 (1987).

    Article  Google Scholar 

  22. 22.

    N. A. Migdisova, N. M. Sushchevskaya, A.V. Lattenen, and E.M. Mikhal’skii, “Variations in the composition of clinopyroxene from the basalts of various geodynamic settings of the Antarctic region,” Petrology 12(2), (2004).

    Google Scholar 

  23. 23.

    S. -S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Lond, Sp. Publ. 42, 313–345 (1989).

    Google Scholar 

  24. 24.

    N. Sushchevskaya and B. Belyatsky, “Geochemical and petrological characteristics of Mesozoic dykes from Schirmacher Oasis (East Antarctica),” in Dyke Swarms: Keys for Geodynamic Interpretation, Ed. by R. K. Srivastava (Springer-Verlag, Berlin-Heidelberg, 2011), pp. 3–18. DOI: 10.1007/978-3-642-12496-9-1.

    Google Scholar 

  25. 25.

    N. M. Sushchevskaya, B. V. Belyatsky, and A. V. Laiba, “Origin, distribution and evolution of plume magmatism in East Antarctica,” in Volcanology, Ed. by Fr. Stoppa (INTECH, Rijeka, 2011), pp. 3–29.

    Google Scholar 

  26. 26.

    V. S. Kamenetsky and R. Maas, “Mantle-melt evolution (dynamic source) in the origin of a single MORB suite: a perspective from magnesian glasses of Macquarie Island,” J. Petrol. 43(10), 1909–1922 (2002).

    Article  Google Scholar 

  27. 27.

    A. W. Hofmann, “Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements,” Treat. Geochem. 2, 61–101 (2003).

    Google Scholar 

  28. 28.

    J. Eisele, M. Sharma, S. J. G. Galer, J. Blichert-Toft, C.W. Devey, and A. W. Hofmann, “The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot,” Earth and Planet. Sci. Lett. 196, 197–212 (2002).

    Article  Google Scholar 

  29. 29.

    R. N. Thompson, A. J. V. Riches, P. M. Antoshechkina, D. G. Pearson, G. M. Nowell, C. J. Ottley, A. P. Dickin, V. L. Hard, A.-K. Ngun and V. Niku-Paavola, “Origin of CFB magmatism: multi-tiered intracrustal picriterhyolite magmatic plumbing at Spitzkoppe, Western Namibia, during Early Cretaceous Etendeka magmatism,” J. Petrol 48(6), 1119–1154 (2007).

    Article  Google Scholar 

  30. 30.

    W. F. McDonough, “Constraints on the composition of the continental lithospheric mantle,” Earth Planet. Sci. Lett. 101, 1–18 (1990).

    Article  Google Scholar 

  31. 31.

    P. E. Janney, A. P. Le Roex, and R. W. Carson, “Hafnium isotope and trace element constrains on the nature of mantle heterogeneity beneath the Central Southwest Indian Ridge (13° E to 47° E),” J. Petrol. 46(12), 2427–2464 (2005).

    Article  Google Scholar 

  32. 32.

    K. H. Rubin and J. M. Sinton, “Inferences on midocean ridge thermal and magmatic structure from MORB Compositions,” Earth Planet. Sci. Lett., Nos. (1–2), 257–276 (2007).

    Google Scholar 

  33. 33.

    R. Jr. Arevalo and W. F. McDonough, “Chemical variations and regional diversity observed in MORB,” Chem. Geol. 271, 70–85 (2010).

    Article  Google Scholar 

  34. 34.

    N. M. Sushchevskaya, V. S. Kamenetsky, B. V. Belyatsky, and A. V. Artamonov, “Geochemical evolution of Indian Ocean basaltic magmatism,” Geochem. Int. 53(8), 599–622 (2013).

    Article  Google Scholar 

  35. 35.

    R. W. Williams, K. D. Collerson, J. B. Gill, and C. Deniel. “High Th/U ratios in subcontinental lithospheric mantle: mass spectrometric measurement of Th isotopes in Gaussberg lamproites,” Earth Planet. Sci. Lett 111, 257–268 (1992).

    Article  Google Scholar 

  36. 36.

    D. R. Nelson, M. T. McCulloch, and S-S. Sun, “The origins of ultrapotassic rocks as inferred from Sr, Nd, and Pb isotopes,” Geochim. Cosmochim. Acta, 231–245 (1986).

    Google Scholar 

  37. 37.

    V. S. Kamenetsky, R. Maas, N. M. Sushchevskaya, M. D. Norman, I. Cartwright, and A. A. Peyve, “Remnants of Gondwana continental lithosphere in oceanic upper mantle: evidence from the South Atlantic Ridge,” Geology 29(3), 243–246 (2001).

    Article  Google Scholar 

  38. 38.

    J. J. Mahoney, W. B. Jones, F. A. Frey, V. J. M. Salters, D. G. Pyle, and H. L. Davies, “Geochemical characteristics of lavas from Broken Ridge, the Naturalist Plateau, and southernmost Kerguelen Plateau: Cretaceous plateau volcanism in the Southeast Indian Ocean,” Chem. Geol. 120, 315–345 (1995).

    Article  Google Scholar 

  39. 39.

    B. V. Belyatsky, E. M. Prasolov, N. M. Sushchevskaya, E. V. Mikhal’skii, A. V. Luttinen, “Specific features of the isotopic composition of Jurassic magmas in the Dronning Maud Land, Antarctica,” Dokl. Earth Sci. 386(4), (2002).

    Google Scholar 

  40. 40.

    B. V. Belyatsky, N. M. Sushchevskaya, G. L. Leichenkov, E. M. Mikhal’skii, and A. A. Laiba, “Magmatism of the Karoo-Maud superplume in the Schirmacher Oasis, East Antarctica,” Dokl. Earth Sci. 406(1), 128–131 (2006).

    Article  Google Scholar 

  41. 41.

    J. S. Heinonen and A. V. Luttinen, “Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: geochemical tracing of ferropicrite sources,” Lithos 105, 347–364 (2008).

    Article  Google Scholar 

  42. 42.

    A. V. Luttinen and H. Furnes, “Flood basalts of Vestfjella: Jurassic magmatism across an Archaean-Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica,” J. Petrol. 41(8), 1271–1305 (2000).

    Article  Google Scholar 

  43. 43.

    A. Yu. Borisova, B. V. Belyatsky, M. V. Portnyagin, and N. M. Suschevskaya, “Petrogenesis of an olivine-phyric basalts from the Aphanasey Nikitin Rise: evidence for contamination by cratonic lower continental crust,” J. Petrol. 42(2), 277–319 (2001).

    Article  Google Scholar 

  44. 44.

    B. V. Belyatsky and A. V. Andronikov, “Deep-seated inclusions of lherzolites from alkaline-ultrabasic rocks of Jetty Oasis (East Antarctica): mineralogical-geochemical composition, P-T conditions, and Sr-Nd isotope characteristics,” in Scientific Results of Russian Geological-Geophysical Studies in Antarctica (VNI-IO Keanologiya, St. Petersburg, 2009), Vol. 2, pp. 89–109.

    Google Scholar 

  45. 45.

    S. F. Foley, A. V. Andronikov, and S. Melzer, “Petrology of ultramafic lamprophyres from the Beaver Lake area of eastern Antarctica and their relation to the breakup of Gondwanaland,” Mineral. Petrol. 74, 361–384 (2002).

    Article  Google Scholar 

  46. 46.

    A. V. Andronikov and S. F. Foley, “Trace element and Nd-Sr isotopic composition of ultramafic lamprophyres from the East Antarctic Beaver Lake area,” Chem. Geol. 175, 291–305 (2001).

    Article  Google Scholar 

  47. 47.

    F. A. Frey, M. F. Coffin, and P. J. Wallace, “Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, Southern Indian Ocean,” Earth Planet. Sci. Lett. 176, 73–89 (2000).

    Article  Google Scholar 

  48. 48.

    A. V. Andronikov, S. F. Foley, and B. V. Beliatsky, “Sm-Nd and Rb-Sr isotopic systematics of the East Antarctic Manning Massif alkaline trachybasalts and the development of the mantle beneath the Lambert-Amery Rift,” Mineral. Petrol. 63, 243–261 (1998).

    Article  Google Scholar 

  49. 49.

    J. J. Mahoney, D. W. Graham, D. M. Christie, K. T. M. Jonson, L. S. Hall, and D. L. Vonderhaar, “Between a hotspot and a cold spot: isotopic variation in the Southeast Indian Ridge asthenosphere, 86° E–118° E,” J. Petrol. 43(7), 1155–1176 (2002).

    Article  Google Scholar 

  50. 50.

    C. R. Neal, J. S. Mahoney, and W. J. Chazey, “Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: results from ODP Leg 183,” J. Petrol. 43, 1177–1208 (2002).

    Article  Google Scholar 

  51. 51.

    F. A. Frey, K. Nicolaysen, B. K. Kubit, and D. Weis, and A. Giret, “A flood basalt from Mont Tourmente in the central Kerguelen Archipelago: the change from transitional to alkalic basalt at ∼25 Ma,” J. Petrol. 43, 1367–1387 (2002).

    Article  Google Scholar 

  52. 52.

    K. D. Collerson, E. Reid, and D. Millar, and M. T. Culloch, “Lithological and Sm-Nd isotopic relationships in the Vestfold Block: Implications for Archean and Proterozoic crustal evolution in the East Antarctic,” in Antarctica Earth Science (Aust. Acad. Sci., Canberra, 1983), pp. 77–84.

    Google Scholar 

  53. 53.

    J. W. Sheraton, L. P. Black, and M. T. McCulloch, “Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: the extent of Proterozoic reworking of Archean continental crust in east Antarctica,” Precambrian Res., No. 26, 169–198 (1984).

    Google Scholar 

  54. 54.

    L. P. Black, P.D. Kinny, J.W. Sheraton and C.P. Delor, “Rapid production and evolution of Late Archean felsic crust in the Vestfold Block of East Antarctica,” Precambrian Res. 32, 343–368 (1991).

    Article  Google Scholar 

  55. 55.

    K. D. Collerson and J. W. Sheraton, “Age and geochemical characteristics of a mafic dyke swarm in the Archean Vestfold Block, Antarctica: inferences about Proterozoic dyke emplacement in Gondwana,” J. Petrol. 27, 853–886 (1986).

    Article  Google Scholar 

  56. 56.

    J. W. Sheraton, L. P. Black, M. T. McCulloch and R. L. Oliver, “Age and origin of a compositionally varied mafic dyke swarm in the Bunger Hills, East Antarctica,” Chem. Geol, No. 85, 215–246 (1990).

    Google Scholar 

  57. 57.

    G. Markl, R. Abart, T. Vennemann, and H. Sommer, “Mid-Crustal metasomatic reaction veins in a spinel peridotite,” J. Petrol. 44(6), 1097–1120 (2003).

    Article  Google Scholar 

  58. 58.

    H. Mirnejad and K. Bell, “Origin and source evolution of the Leucite Hills lamproites: evidence from Sr-Nd-Pb-O isotopic compositions,” J. Petrol 47, 2463–2489 (2006).

    Article  Google Scholar 

  59. 59.

    S. F. Foley, “Vein-plus-wall-rock melting mechanism in the lithosphere and the origin of potassic alkaline magmatism,” Lithos 28, 435–453 (1992).

    Article  Google Scholar 

  60. 60.

    D. A. Golynskii and A. V. Golynskii, “Rift systems of East Antarctica-a key to understanding Gondwana break-up,” Regional. Geol. Metallogen., No. 52, 58–72 (2012).

    Google Scholar 

  61. 61.

    A. V. Sobolev, S.V. Sobolev, D.V. Kuzmin, K.N. Malitch, and A.G. Petrunin, “Siberian meimechites: origin and relation to flood basalts and kimberlites,” Russ. Geol. Geophys. 50(12), 999–1033 (2009).

    Article  Google Scholar 

  62. 62.

    S. F. Foley, C. M. Petibon, G. A. Jenner, and B. A. Kjarsgaard, “High U/Th partitioning by clinopyroxene from alkali silicate and carbonatite metasomatism: an origin for Th/U disequilibrium in mantle melts?,” Terra Nova 13, 104–109 (2001).

    Article  Google Scholar 

  63. 63.

    R. G. Kurinin, A. S. Grinson, and Yu. Dhun Zhun, “Rift-zone of Lambert Glacier-as possible alkaline-ultramafic province in the East Antarctica,” Rept. SU Acad. Sci. 299, 944–947 (1988).

    Google Scholar 

  64. 64.

    N. Chatterjee and K. Nicolaysen, “An intercontinental correlation of the Mid-Neoproterozoic eastern Indian Tectonic Zone: evidence from the gneissic clasts in Elan Bank Conglomerate, Kerguelen Plateau,” Contrib. Mineral. Petrol. 163, 789–806 (2012).

    Article  Google Scholar 

  65. 65.

    A. Segev, “Flood basalts, continental breakup and the dispersal of Gondwana: evidence for periodic migration of upwelling mantle flows (plumes),” European Geosciences Union. EGU Stephan Mueller Special Publ. Ser., No. 2, 171–191 (2002).

    Google Scholar 

  66. 66.

    F. Bénard, J. P. Callot, R. Vially, J. Schmitz, W. Roest, M. Patriat, B. Loubrieu, and ExtraPlac Team, “The Kerguelen Plateau: records from a long-living/composite microcontinent,” Marine Petrol. Geol. 27, 633–649 (2010).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. M. Sushchevskaya.

Additional information

Original Russian Text © N.M. Sushchevskaya, N.A. Migdisova, A.V. Antonov, R.Sh. Krymsky, B.V. Belyatsky, D.V. Kuzmin, Ya.V. Bychkova, 2014, published in Geokhimiya, 2014, No. 12, pp. 1079–1098.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sushchevskaya, N.M., Migdisova, N.A., Antonov, A.V. et al. Geochemical features of the quaternary lamproitic lavas of Gaussberg Volcano, East Antarctica: Result of the impact of the Kerguelen plume. Geochem. Int. 52, 1030–1048 (2014). https://doi.org/10.1134/S0016702914120106

Download citation

Keywords

  • lamproites
  • Antarctica
  • plume magmatism
  • isotopy
  • geochemistry