Advertisement

Geochemistry International

, Volume 52, Issue 12, pp 1030–1048 | Cite as

Geochemical features of the quaternary lamproitic lavas of Gaussberg Volcano, East Antarctica: Result of the impact of the Kerguelen plume

  • N. M. SushchevskayaEmail author
  • N. A. Migdisova
  • A. V. Antonov
  • R. Sh. Krymsky
  • B. V. Belyatsky
  • D. V. Kuzmin
  • Ya. V. Bychkova
Article

Abstract

Petrological-geochemical data were obtained on the lamproites of the Gaussberg Volcano located at the eastern Antarctic coast and compared with data on the magmatic rocks developed in the East Antarctica and Indian Ocean in relation with the Kerguelen plume. It was shown that the lamproites were derived from the ancient Gondwana lithosphere repeatedly modified at the early stages of its evolution, including significant enrichment in volatiles, lithophile elements, and radiogenic Sr and Pb isotopes.

The Gaussberg Volcano located on the eastern Antarctic continental margin falls in the distribution field of the Kerguelen plume, which formed 130 Ma within the incipient Indian Ocean and is continuing to operate at present, forming volcanic rocks of Heard Island in the last ka. Manifestations of alkaline magmatism at the Antarctic margin around 56 ka (Mt. Gaussberg) indicate a sublithospheric spreading of mantle plume in the southwestern direction.

Keywords

lamproites Antarctica plume magmatism isotopy geochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. L. Anderson, “The sublithospheric mantle as the source of continental flood basalts: the case against the continental lithosphere and plume head reservoirs,” Earth Planet. Sci. Lett. 123, 269–280 (1994).CrossRefGoogle Scholar
  2. 2.
    K. C. Condie, Mantle plumes and their record in Earth history (Cambridge University Press, Cambridge, 2001).CrossRefGoogle Scholar
  3. 3.
    V. Courtillot, A. Davaillie, J. Besse, and J. Stock, “Three distinct types of hotspots in the Earth’s mantle,” Earth Planet. Sci. Lett. 205, 295–308 (2003).CrossRefGoogle Scholar
  4. 4.
    S. F. Foley and G. A. Jenner, “Trace element partitioning in lamproitic magmas-the Gaussberg olivine leucitite,” Lithos 75, 19–38 (2004).CrossRefGoogle Scholar
  5. 5.
    A. D. Edgar and R. H. Mitchell, “Ultra high pressure-temperature melting experiments on an SiO2-rich lamproite from Smoky Butte, Montana: derivation of siliceous lamproite magmas from enriched sources deep in the continental mantle,” J. Petrol. 38(6), 457–477 (1997).CrossRefGoogle Scholar
  6. 6.
    R. H. Mitchell and A. R. Chakhmouradian, “Instability of perovskite in a CO2-rich environment: examples from carbonatite and kimberlite,” Can. Mineral. 36(4), 939–951 (1998).Google Scholar
  7. 7.
    D. T. Murphy, K. D. Collerson, and B. S. Kamber, “Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments,” J. Petrol. 43(6), 981–1001 (2002).CrossRefGoogle Scholar
  8. 8.
    Yu. S. Glebovsky, “Subice Brown-Gaussberg Ridge,” Byull. Soviet Antarct. Expedition, No. 10, 13–17 (1959).Google Scholar
  9. 9.
    K. D. Collerson and M. T. McCulloch, “Nd and Sr isotope geochemistry of leucite-bearing lavas from Gaussberg, East Antarctica,” in Antarctica Earth Science (Aust. Acad. Sci., Canberra, 1983), pp. 676–680.Google Scholar
  10. 10.
    J. W. Sheraton and A. Cundari, “Leucitites from Gaussberg, Antarctica,” Contrib. Mineral. Petrol. 71, 417–427 (1980).CrossRefGoogle Scholar
  11. 11.
    R. J. Tingey, I. McDougall, and A. J. W. Gleadow, “The age and mode of formation of Gaussberg, Antarctica,” J. Geol. Soc. Austral. 30, 241–246 (1983).CrossRefGoogle Scholar
  12. 12.
    O. S. Vyalov and V. S. Sobolev, “Gaussberg, Antarctica,” Int. Geol. Rev., No. 1 (7), 30–40 (1959).Google Scholar
  13. 13.
    B. Stoll, K. P. Jochum, K. Herwig, M. Amini, M. Flanz, B. Kreuzburg, D. Kuzmin, M. Willbold, and J. Enzweiler, “An automated iridium-strip-heater for LA-ICP-MS bulk analysis of geological samples,” Geostand. Geoanalyt. Res. 32, 5–26 (2008).CrossRefGoogle Scholar
  14. 14.
    A. V. Sobolev, A. W. Hofmann, D. V. Kuzmin, G. M. Yaxley, T. Nicholas, Sun-Lin. Arndt, L. V. Chung, F. A. Elliott, M. O. Frey, A. A. Garcia, V. S. Gurenko, A. C. Kamenetsky, N. A. Kerr, V. V. Krivolutskaya, I. K. Matvienkov, A. Nokogosian, I. A. Rocholl, N. M. Sigurdsson, M. Suschevskaya, and M. Teklay, “The amount of recycled crust in sources of mantle-derived melts,” Science, 316(5823), 412–417 (2007).CrossRefGoogle Scholar
  15. 15.
    G. Manhes, J. E. Minster, and C. J. Allegre, “Comparative uranium-thorium-lead and rubidium-strontium study of the Severin amphoterite: consequences for early Solar System chronology,” Earth Planet. Sci. Lett. 39, 14–24 (1978).CrossRefGoogle Scholar
  16. 16.
    K. R. Ludwig, “PBDAT: a computer program for processing Pb-U-Th isotope data, version 20,” U.S. Geol. Surv. Open-File Rept., No. 88-542, (1991).Google Scholar
  17. 17.
    P. Richard, N. Schimizu, and C. J. Allegre, “143Nd/144Nd natural tracer: an application to oceanic basalts,” Earth Planet. Sci. Lett. 31, 269–278 (1976).CrossRefGoogle Scholar
  18. 18.
    D. A. Golynsky and A. V. Golynsky, “Gaussberg rift-illusion or reality?,” in 10th International Symposium on Antarctic Earth Sciences. Extended Abstract 168, U.S. Geol. Surv. Nat. Acad.; USGS OF-2007-1047 (2011).Google Scholar
  19. 19.
    S. R. Hart, J. Blusztajn, W. E. Lemasurier, and D. C. Rex, “Hobbs Coast Cenozoic volcanism: implications for the West Antarctic Rift System,” Chem. Geol. 139, 223–248 (1997).CrossRefGoogle Scholar
  20. 20.
    G. H. Grantham, “Aspects of Jurassic magmatism and faulting in western Dronning Maud,” in Weddell Sea Tectonics and Gondwana Break-Up, Geol. Soc. Sp. Publ., London 108 63–71 (1996).Google Scholar
  21. 21.
    H. Furnes, E. Vad, and H. Austrheim, “Geochemistry of basalt lavas from Vestfjella, Dronning Maud Land, Antarctica,” Lithos 20, 337–356 (1987).CrossRefGoogle Scholar
  22. 22.
    N. A. Migdisova, N. M. Sushchevskaya, A.V. Lattenen, and E.M. Mikhal’skii, “Variations in the composition of clinopyroxene from the basalts of various geodynamic settings of the Antarctic region,” Petrology 12(2), (2004).Google Scholar
  23. 23.
    S. -S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Lond, Sp. Publ. 42, 313–345 (1989).Google Scholar
  24. 24.
    N. Sushchevskaya and B. Belyatsky, “Geochemical and petrological characteristics of Mesozoic dykes from Schirmacher Oasis (East Antarctica),” in Dyke Swarms: Keys for Geodynamic Interpretation, Ed. by R. K. Srivastava (Springer-Verlag, Berlin-Heidelberg, 2011), pp. 3–18. DOI: 10.1007/978-3-642-12496-9-1.Google Scholar
  25. 25.
    N. M. Sushchevskaya, B. V. Belyatsky, and A. V. Laiba, “Origin, distribution and evolution of plume magmatism in East Antarctica,” in Volcanology, Ed. by Fr. Stoppa (INTECH, Rijeka, 2011), pp. 3–29.Google Scholar
  26. 26.
    V. S. Kamenetsky and R. Maas, “Mantle-melt evolution (dynamic source) in the origin of a single MORB suite: a perspective from magnesian glasses of Macquarie Island,” J. Petrol. 43(10), 1909–1922 (2002).CrossRefGoogle Scholar
  27. 27.
    A. W. Hofmann, “Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements,” Treat. Geochem. 2, 61–101 (2003).Google Scholar
  28. 28.
    J. Eisele, M. Sharma, S. J. G. Galer, J. Blichert-Toft, C.W. Devey, and A. W. Hofmann, “The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot,” Earth and Planet. Sci. Lett. 196, 197–212 (2002).CrossRefGoogle Scholar
  29. 29.
    R. N. Thompson, A. J. V. Riches, P. M. Antoshechkina, D. G. Pearson, G. M. Nowell, C. J. Ottley, A. P. Dickin, V. L. Hard, A.-K. Ngun and V. Niku-Paavola, “Origin of CFB magmatism: multi-tiered intracrustal picriterhyolite magmatic plumbing at Spitzkoppe, Western Namibia, during Early Cretaceous Etendeka magmatism,” J. Petrol 48(6), 1119–1154 (2007).CrossRefGoogle Scholar
  30. 30.
    W. F. McDonough, “Constraints on the composition of the continental lithospheric mantle,” Earth Planet. Sci. Lett. 101, 1–18 (1990).CrossRefGoogle Scholar
  31. 31.
    P. E. Janney, A. P. Le Roex, and R. W. Carson, “Hafnium isotope and trace element constrains on the nature of mantle heterogeneity beneath the Central Southwest Indian Ridge (13° E to 47° E),” J. Petrol. 46(12), 2427–2464 (2005).CrossRefGoogle Scholar
  32. 32.
    K. H. Rubin and J. M. Sinton, “Inferences on midocean ridge thermal and magmatic structure from MORB Compositions,” Earth Planet. Sci. Lett., Nos. (1–2), 257–276 (2007).Google Scholar
  33. 33.
    R. Jr. Arevalo and W. F. McDonough, “Chemical variations and regional diversity observed in MORB,” Chem. Geol. 271, 70–85 (2010).CrossRefGoogle Scholar
  34. 34.
    N. M. Sushchevskaya, V. S. Kamenetsky, B. V. Belyatsky, and A. V. Artamonov, “Geochemical evolution of Indian Ocean basaltic magmatism,” Geochem. Int. 53(8), 599–622 (2013).CrossRefGoogle Scholar
  35. 35.
    R. W. Williams, K. D. Collerson, J. B. Gill, and C. Deniel. “High Th/U ratios in subcontinental lithospheric mantle: mass spectrometric measurement of Th isotopes in Gaussberg lamproites,” Earth Planet. Sci. Lett 111, 257–268 (1992).CrossRefGoogle Scholar
  36. 36.
    D. R. Nelson, M. T. McCulloch, and S-S. Sun, “The origins of ultrapotassic rocks as inferred from Sr, Nd, and Pb isotopes,” Geochim. Cosmochim. Acta, 231–245 (1986).Google Scholar
  37. 37.
    V. S. Kamenetsky, R. Maas, N. M. Sushchevskaya, M. D. Norman, I. Cartwright, and A. A. Peyve, “Remnants of Gondwana continental lithosphere in oceanic upper mantle: evidence from the South Atlantic Ridge,” Geology 29(3), 243–246 (2001).CrossRefGoogle Scholar
  38. 38.
    J. J. Mahoney, W. B. Jones, F. A. Frey, V. J. M. Salters, D. G. Pyle, and H. L. Davies, “Geochemical characteristics of lavas from Broken Ridge, the Naturalist Plateau, and southernmost Kerguelen Plateau: Cretaceous plateau volcanism in the Southeast Indian Ocean,” Chem. Geol. 120, 315–345 (1995).CrossRefGoogle Scholar
  39. 39.
    B. V. Belyatsky, E. M. Prasolov, N. M. Sushchevskaya, E. V. Mikhal’skii, A. V. Luttinen, “Specific features of the isotopic composition of Jurassic magmas in the Dronning Maud Land, Antarctica,” Dokl. Earth Sci. 386(4), (2002).Google Scholar
  40. 40.
    B. V. Belyatsky, N. M. Sushchevskaya, G. L. Leichenkov, E. M. Mikhal’skii, and A. A. Laiba, “Magmatism of the Karoo-Maud superplume in the Schirmacher Oasis, East Antarctica,” Dokl. Earth Sci. 406(1), 128–131 (2006).CrossRefGoogle Scholar
  41. 41.
    J. S. Heinonen and A. V. Luttinen, “Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: geochemical tracing of ferropicrite sources,” Lithos 105, 347–364 (2008).CrossRefGoogle Scholar
  42. 42.
    A. V. Luttinen and H. Furnes, “Flood basalts of Vestfjella: Jurassic magmatism across an Archaean-Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica,” J. Petrol. 41(8), 1271–1305 (2000).CrossRefGoogle Scholar
  43. 43.
    A. Yu. Borisova, B. V. Belyatsky, M. V. Portnyagin, and N. M. Suschevskaya, “Petrogenesis of an olivine-phyric basalts from the Aphanasey Nikitin Rise: evidence for contamination by cratonic lower continental crust,” J. Petrol. 42(2), 277–319 (2001).CrossRefGoogle Scholar
  44. 44.
    B. V. Belyatsky and A. V. Andronikov, “Deep-seated inclusions of lherzolites from alkaline-ultrabasic rocks of Jetty Oasis (East Antarctica): mineralogical-geochemical composition, P-T conditions, and Sr-Nd isotope characteristics,” in Scientific Results of Russian Geological-Geophysical Studies in Antarctica (VNI-IO Keanologiya, St. Petersburg, 2009), Vol. 2, pp. 89–109.Google Scholar
  45. 45.
    S. F. Foley, A. V. Andronikov, and S. Melzer, “Petrology of ultramafic lamprophyres from the Beaver Lake area of eastern Antarctica and their relation to the breakup of Gondwanaland,” Mineral. Petrol. 74, 361–384 (2002).CrossRefGoogle Scholar
  46. 46.
    A. V. Andronikov and S. F. Foley, “Trace element and Nd-Sr isotopic composition of ultramafic lamprophyres from the East Antarctic Beaver Lake area,” Chem. Geol. 175, 291–305 (2001).CrossRefGoogle Scholar
  47. 47.
    F. A. Frey, M. F. Coffin, and P. J. Wallace, “Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, Southern Indian Ocean,” Earth Planet. Sci. Lett. 176, 73–89 (2000).CrossRefGoogle Scholar
  48. 48.
    A. V. Andronikov, S. F. Foley, and B. V. Beliatsky, “Sm-Nd and Rb-Sr isotopic systematics of the East Antarctic Manning Massif alkaline trachybasalts and the development of the mantle beneath the Lambert-Amery Rift,” Mineral. Petrol. 63, 243–261 (1998).CrossRefGoogle Scholar
  49. 49.
    J. J. Mahoney, D. W. Graham, D. M. Christie, K. T. M. Jonson, L. S. Hall, and D. L. Vonderhaar, “Between a hotspot and a cold spot: isotopic variation in the Southeast Indian Ridge asthenosphere, 86° E–118° E,” J. Petrol. 43(7), 1155–1176 (2002).CrossRefGoogle Scholar
  50. 50.
    C. R. Neal, J. S. Mahoney, and W. J. Chazey, “Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: results from ODP Leg 183,” J. Petrol. 43, 1177–1208 (2002).CrossRefGoogle Scholar
  51. 51.
    F. A. Frey, K. Nicolaysen, B. K. Kubit, and D. Weis, and A. Giret, “A flood basalt from Mont Tourmente in the central Kerguelen Archipelago: the change from transitional to alkalic basalt at ∼25 Ma,” J. Petrol. 43, 1367–1387 (2002).CrossRefGoogle Scholar
  52. 52.
    K. D. Collerson, E. Reid, and D. Millar, and M. T. Culloch, “Lithological and Sm-Nd isotopic relationships in the Vestfold Block: Implications for Archean and Proterozoic crustal evolution in the East Antarctic,” in Antarctica Earth Science (Aust. Acad. Sci., Canberra, 1983), pp. 77–84.Google Scholar
  53. 53.
    J. W. Sheraton, L. P. Black, and M. T. McCulloch, “Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: the extent of Proterozoic reworking of Archean continental crust in east Antarctica,” Precambrian Res., No. 26, 169–198 (1984).Google Scholar
  54. 54.
    L. P. Black, P.D. Kinny, J.W. Sheraton and C.P. Delor, “Rapid production and evolution of Late Archean felsic crust in the Vestfold Block of East Antarctica,” Precambrian Res. 32, 343–368 (1991).CrossRefGoogle Scholar
  55. 55.
    K. D. Collerson and J. W. Sheraton, “Age and geochemical characteristics of a mafic dyke swarm in the Archean Vestfold Block, Antarctica: inferences about Proterozoic dyke emplacement in Gondwana,” J. Petrol. 27, 853–886 (1986).CrossRefGoogle Scholar
  56. 56.
    J. W. Sheraton, L. P. Black, M. T. McCulloch and R. L. Oliver, “Age and origin of a compositionally varied mafic dyke swarm in the Bunger Hills, East Antarctica,” Chem. Geol, No. 85, 215–246 (1990).Google Scholar
  57. 57.
    G. Markl, R. Abart, T. Vennemann, and H. Sommer, “Mid-Crustal metasomatic reaction veins in a spinel peridotite,” J. Petrol. 44(6), 1097–1120 (2003).CrossRefGoogle Scholar
  58. 58.
    H. Mirnejad and K. Bell, “Origin and source evolution of the Leucite Hills lamproites: evidence from Sr-Nd-Pb-O isotopic compositions,” J. Petrol 47, 2463–2489 (2006).CrossRefGoogle Scholar
  59. 59.
    S. F. Foley, “Vein-plus-wall-rock melting mechanism in the lithosphere and the origin of potassic alkaline magmatism,” Lithos 28, 435–453 (1992).CrossRefGoogle Scholar
  60. 60.
    D. A. Golynskii and A. V. Golynskii, “Rift systems of East Antarctica-a key to understanding Gondwana break-up,” Regional. Geol. Metallogen., No. 52, 58–72 (2012).Google Scholar
  61. 61.
    A. V. Sobolev, S.V. Sobolev, D.V. Kuzmin, K.N. Malitch, and A.G. Petrunin, “Siberian meimechites: origin and relation to flood basalts and kimberlites,” Russ. Geol. Geophys. 50(12), 999–1033 (2009).CrossRefGoogle Scholar
  62. 62.
    S. F. Foley, C. M. Petibon, G. A. Jenner, and B. A. Kjarsgaard, “High U/Th partitioning by clinopyroxene from alkali silicate and carbonatite metasomatism: an origin for Th/U disequilibrium in mantle melts?,” Terra Nova 13, 104–109 (2001).CrossRefGoogle Scholar
  63. 63.
    R. G. Kurinin, A. S. Grinson, and Yu. Dhun Zhun, “Rift-zone of Lambert Glacier-as possible alkaline-ultramafic province in the East Antarctica,” Rept. SU Acad. Sci. 299, 944–947 (1988).Google Scholar
  64. 64.
    N. Chatterjee and K. Nicolaysen, “An intercontinental correlation of the Mid-Neoproterozoic eastern Indian Tectonic Zone: evidence from the gneissic clasts in Elan Bank Conglomerate, Kerguelen Plateau,” Contrib. Mineral. Petrol. 163, 789–806 (2012).CrossRefGoogle Scholar
  65. 65.
    A. Segev, “Flood basalts, continental breakup and the dispersal of Gondwana: evidence for periodic migration of upwelling mantle flows (plumes),” European Geosciences Union. EGU Stephan Mueller Special Publ. Ser., No. 2, 171–191 (2002).Google Scholar
  66. 66.
    F. Bénard, J. P. Callot, R. Vially, J. Schmitz, W. Roest, M. Patriat, B. Loubrieu, and ExtraPlac Team, “The Kerguelen Plateau: records from a long-living/composite microcontinent,” Marine Petrol. Geol. 27, 633–649 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. M. Sushchevskaya
    • 1
    Email author
  • N. A. Migdisova
    • 1
  • A. V. Antonov
    • 2
  • R. Sh. Krymsky
    • 2
  • B. V. Belyatsky
    • 2
  • D. V. Kuzmin
    • 3
    • 4
  • Ya. V. Bychkova
    • 5
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Center for Isotopic ResearchKarpinskii All-Russia Research Institute of GeologySt. PetersburgRussia
  3. 3.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Max-Planck Institute for ChemistryMainzGermany
  5. 5.Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM)Russian Academy of SciencesMoscowRussia

Personalised recommendations