Skip to main content
Log in

Gold sulfoarsenide complexes in ore-forming hydrothermal solutions (thermodynamic modeling)

  • Short Communications
  • Published:
Geochemistry International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. I.Ya. Nekrasov. Geochemistry, Mineralogy, and Origin of Gold Ore Deposits (Nauka, Moscow, 1991).

    Google Scholar 

  2. R. R. Large, L. Danyushevsky, C. Hollit, V. Maslenni- cov, S. Meffer, S. Gilbert, S. Bull, R. Scott, P. Emsbo, H. Thomas, B. Sinch, and J. Foster, “Gold and trace elements zonation in pyrite using a laser imaging technique: Implication for timing of gold in orogenic and Carlin-style sediment-hosted deposits,” Econ. Geol. 104(5), 635–668 (2009).

    Article  Google Scholar 

  3. H. V. Thomas, R. R. Large, S. W. Bull, V. Maslennicov, R. F. Berry, R. Fraser, S. Frooud, and R. Moge, “Pyrite and pyrrhotite textures and compositions in sediments, laminated quartz veins and reefs at Bendigo Gold Mine, Australia: insight for ore genesis,” Econ. Geol. 106(1), 1–31 (2011).

    Article  Google Scholar 

  4. N. V. Vilor, M. G. Kazharskaya, E. V. Chuparina, V. V. Kotkin, and S. Yu. Deis, “Distribution of gold concentration in the deposits of the Bodaibo ore district,” Rudy Met., No. 1, 34–43 (2007).

    Google Scholar 

  5. K. R. Kovalev, Yu. A. Kalinin, E. A. Naumov, M. K. Kolesnikova, V. I. Korolyuk, “Gold-bearing arsenopyrite in eastern Kazakhstan gold-sulfide deposits,” Russ. Geol. Geophys. 52(2), 178–192 (2011).

    Article  Google Scholar 

  6. A. D. Genkin, F. E. Vagner, T. L. Krylova, and A. I. Tsepin, “Gold-bearing arsenopyrite and its formation condition at the Olympiada and Veduga gold deposits (Yenisei Range, Siberia),” Geol. Ore Dep. 44(1), 72–68 (2002).

    Google Scholar 

  7. M. Reich, S. E. Kesler, S. Utsunomya, C. S. Palenik, S. Chryssoulis, and R. C. Ewing, “Solubility of gold in arsenous pyrite,” Geochim. Cosmochim. Acta 66(11), 2781–2796 (2005).

    Article  Google Scholar 

  8. T. M. Seward, “Thiocomplexes of gold in hydrothermal ore solutions,” Geochim. Cosmochim. Acta 37(2), 379–399 (1973).

    Article  Google Scholar 

  9. T. A. Grigor’eva and L. S. Sukneva, “Effect of sulfur and stibium and arsenic sulfides on the gold solubility,” Geokhimiya, No. 10, 1534–1539 (1981).

    Google Scholar 

  10. T. M. Akhmedzhanova, I. Ya. Nekrasov, V. I. Tikhomirova, and A. Konyushok, “Gold solubility in the sulfidearsenous solutions at 200–300°C,” Dokl. Akad. Nauk SSSR 300(6), 1453–1456 (1988).

    Google Scholar 

  11. V. I. Tikhomirova, G. M. Akhmedzhanova, A. I. Nekrasov, and T. N. Dokina, “Study of the effect of arsenic and redox conditions on the gold solubility in the halogenic solutions at 200–300°C and pressure of 50 MPa,” in Experimental and Theoretical Modeling of Mineral Formation (Nauka, Moscow, 1998), pp. 326–339 [in Russian].

    Google Scholar 

  12. N. V. Vilor and L. A. Kaz’min, “Physicochemical modeling as applied to study of sulfoarsenide complexes in hydrothermal solutions,” Russ. Geol. Geophys. 48(6), 457–467 (2007).

    Article  Google Scholar 

  13. N. V. Vilor, L. A. Kaz’min, and L. A. Pavlova, “Physicochemical modeling mineral formation at the gold deposits (Fe-As-S-Na-Cl-H2O system),” Vestn. SVNTs DVO RAN, No. 4, 52–64 (2011).

    Google Scholar 

  14. H. C. Helgeson, D. H. Kirkham, and G. C. Flowers, “Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressure and temperatures: IV. Calculation of activity coefficients, osmotic coefficients and apparent molal and standard and relative partial molal properties to 600°C and 5 kbar,” Amer. J. Sci. 291, 1249–1516 (1981).

    Article  Google Scholar 

  15. E. L. Shock, L. Sassani, M. Willes, and D. A. Sverjensky, “Inorganic species in geologic fluids: Correlation among standard molal thermodynamic properties of aqueous hydroxide complexes,” Geochim. Cosmochim. Acta 61(5), 907–950 (1997).

    Article  Google Scholar 

  16. D. A. Sverjensky, E. L. Shock, and H. C. Helgeson, “Prediction of thermodynamic properties of aqueous metal complexes to 1000°C and 5 kbar,” Geochim. Cosmochim. Acta 61, 1359–1412 (1997).

    Article  Google Scholar 

  17. N. N. Akinfiev and A. V. Zotov, “Thermodynamic description of chloride, hydrosulfide, and hydroxo complexes of Ag(I), Cu(I), and Au(I) at temperatures of 25–500°C and pressures of 1–2000 bar,” Geochem. Int., 39(10), 990–1006 (2001).

    Google Scholar 

  18. N. N. Akinfiev and A. V. Zotov, “Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0–600°C and pressures of 1–3000 bar,” Geochem. Int. 48(7), 714–720 (2010).

    Article  Google Scholar 

  19. L. G. Benning and T. M. Seward, “Hydrosulfide complexing of Au (I) in hydrothermal solutions from 150–400°C and 500–1500 bars,” Geochim. Cosmochim. Acta 6(11), 1849–1871 (1996).

    Article  Google Scholar 

  20. P. J. Renders and T. M. Seward, “The stability of hydrosulfide-sulfide complexes of Au (I) and Ag(I) at 25°C,” Geochim. Cosmochim. Acta 53(2), 245–253 (1989).

    Article  Google Scholar 

  21. G. A. Pal’yanova, Physicochemical Peculiarities of Gold and Silver Behavior during Hydrothermal Ore Formation (SO RAN, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  22. I. V. Zakirov, T. M. Dadze, N. G. Sretenskaya, T. A. Kashirtseva, V. A. Volchanskaya, “Gold solubility in low-density fluids in the Au—H2O-H2S-Cl system: Experimental data,” Geochem. Int. 47(3), 311–314 (2009).

    Article  Google Scholar 

  23. F. Gibert, M. -L. Pascal, and M. Pichavant, “Gold solubility and speciation in hydrothermal solutions: Experimental study of the stability of hydrosulphide complex of gold (AuHS0) at 350–450°C and 500 bars,” Geochim. Cosmochim. Acta 62(17), 2931–2947 (1998).

    Article  Google Scholar 

  24. V. B. Belevantsev, B. I. Peshchevitskii, and G. I. Shamovskaya, “Sulfide complexes of Au(I) in aqueous solutions,” Izv. Sib. Otd. Ross. Akad. Nauk, Ser. Khim., 1(2), 81–87.

  25. T. M. Dadze, T. M. Akhmedzhanova, T. A. Kashirtseva, and R. Yu. Orlov, “The Au solubility in H2S-bearing aqueous solutions at 300°C,” Dokl. Earth Sci. 369A(9), 1275–1276 (1999).

    Google Scholar 

  26. A. V. Zotov, N. N. Baranova, and L. N. Bannykh, “Solubility of the gold sulfides Au2S and AuAgS in solutions containing hydrogen sulfide at 25–80°C and pressures of 1 and 500 bar,” Geochem. Int. 34(3), 216–221 (1996).

    Google Scholar 

  27. D. M. Shenberger and H. L. Barnes, “Solubility of gold in aqueous sulfide solutions from 150 to 350°C,” Geochim. Cosmochim. Acta 53(2), 269–278 (1989).

    Article  Google Scholar 

  28. V. Zakaznova-Herzog and T. M. Seward, “A Spectrophotometric Study of the Formation and Deprotonation of Thioarsenite Species in Aqueous Solution at 22°C,” Geochim. Cosmochim. Acta 83, 48–60 (2012).

    Article  Google Scholar 

  29. G. S. Pokrovsky, R. Gout, J. Shott, A. Zotov, and J.-C. Harrichoury, “Thermodynamic properties and stoichiometry of As (III) hydroxide complexes at hydrothermal conditions,” Geochim. Cosmochim. Acta 60(5), 737–749 (1996).

    Article  Google Scholar 

  30. J. A. Tossell, “Theoretical studies of an arsenic oxide and hydroxide species in minerals and in aqueous solution,” Geochim. Cosmochim. Acta 61(8), 1613–1623 (1997).

    Article  Google Scholar 

  31. K. V. Chudnenko, Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, and Applications (“Geo”, Novosibirsk, 2010) [in Russian].

    Google Scholar 

  32. I. Ya. Nekrasov and A. A. Konyushok, “Heteropolynuclear gold complexes in the stibium-sulfide solutions,” Dokl. Akad. Nauk SSSR 266(6), 1463–1467 (1982).

    Google Scholar 

  33. J. A. Tossel, “The speciation of gold in aqueous solutions: a theoretical study,” Geochim. Cosmochim. Acta 60(1), 17–29 (1996).

    Article  Google Scholar 

  34. C. A. Heinrich and P. J. Eadington, “Thermodynamic properties of the hydrothermal chemistry of arsenic and their significance for the paragenetic sequence of some cassiterite-arsenopyrite-base metal sulfide deposits,” Econ. Geol. 81(3), 511–528 (1986).

    Article  Google Scholar 

  35. M. H. N. Srivastava and S. Ghosh, “Studies of thioarsenites. Part 1. Precipitation and dissolution of arsenious sulfide,” J. Indian. Chem. Soc. 35(5), 165–169 (1958).

    Google Scholar 

  36. N. A. Goryachev, O. V. Vikent’eva, N. S. Bortnikov, V. Yu. Prokof’ev, V. A. Alpatov, and V. V. Golub, “The world-class Natalka gold deposit, northeast Russia: REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore,” Geol. Ore Dep. 50(5), 362–390 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Vilor.

Additional information

Original Russian Text © N.V. Vilor, L.A. Kazmin, N.A. Goryachev, 2014, published in Geokhimiya, 2014, No. 10, pp. 936–945.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilor, N.V., Kazmin, L.A. & Goryachev, N.A. Gold sulfoarsenide complexes in ore-forming hydrothermal solutions (thermodynamic modeling). Geochem. Int. 52, 882–890 (2014). https://doi.org/10.1134/S0016702914100103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702914100103

Keywords

Navigation