Skip to main content
Log in

Solution behavior of C-O-H volatiles in FeO-Na2O-Al2O3-SiO2 melts in equilibrium with liquid iron alloy and graphite at 4 GPa and 1550°C

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

In order to elucidate the solution behavior of carbon and hydrogen in iron-bearing magmatic melts in equilibrium with a metallic iron phase and graphite at oxygen fugacity (fO2) values 2–5 orders of magnitude below the iron-wustite buffer equilibrium, fO2 (IW), experiments were carried out at 4 GPa and 1550°C with melts of FeO-Na2O-SiO2-Al2O3 compositions. Melt reduction in response to an fO2 decrease was accompanied by a decrease in FeO content. The values of fO2 in the experiments were determined on the basis of equilibrium between Fe-C-Si alloy and silicate liquid. Infrared and Raman spectroscopy showed that carbon compounds are formed in FeO-Na2O-SiO2-Al2O3 melts: CH4 molecules, CH3 complexes (Si-O-CH3), and complexes with double C=O bonds. The content of CO2 molecules and carbonate ions (CO 2−3 ) is very low. In addition to carbon-bearing compounds, dissolved hydrogen occurs in melt as H2 and H2O molecules and OH groups. The spectral characteristics of FeO-Na2O-SiO2-Al2O3 glasses indicate the occurrence of redox reactions in the melt, which are accompanied at decreasing fO2 by a significant decrease in H2O and OH, a slight decrease in H2, and a significant concomitant increase in CH4 content. The content of species with the double C=O bond increases considerably at decreasing fO2 and reaches a maximum at ΔlogfO2(IW) = −3. According to the obtained IR spectra, the total water content (OH + H2O) in the glasses is 1.2–5.8 wt % and decreases with decreasing fO2. The high H2O contents are due largely to oxygen release related to FeO reduction in the melt. The total carbon content at high H2O (4.9–5.8 wt %) is approximately 0.4 wt %. The carbon content in liquid iron alloys depends on silicon content and, probably, oxygen solubility and ranges from 0.3 to 3.65 wt %. Low carbon contents were observed at a significant increase in Si content in liquid iron alloy, which may be as high as ∼13 wt % at fO2 values 4–5 orders of magnitude below fO2(IW).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Jambon, “Earth degassing and large-scale geochemical cycling of volatile elements,” in Volatiles in Magmas, Ed. by M.R. Carroll and J.R. Holloway (Mineralogical Society of America, Washington, 1994), pp. 479–517.

    Google Scholar 

  2. M. Javoy, “The major volatile elements of the Earth: their origin, behavior, and fate,” Geophys. Res. Lett. 24, 177–180 (1997).

    Article  Google Scholar 

  3. P. Cartigny, F. Jendrzejewski, F. Pineau, E. Petit, and M. Javoy, “Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing: the case of the southwest Indian Ridge,” Earth Planet. Sci. Lett. 194, 241–257 (2001).

    Article  Google Scholar 

  4. B. Marty, “The origins and concentrations of water, carbon, nitrogen and noble gases on Earth,” Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

    Article  Google Scholar 

  5. D. Stevenson, “Models of the Earth’s core,” Science 214, 611–619 (1981).

    Article  Google Scholar 

  6. S. Sasaki and K. Nakazawa, “Metal-silicate fractionation in the growing Earth: energy source for the terrestrial magma ocean,” J. Geophys. Res., 91, B9231–B9238 (1986).

    Article  Google Scholar 

  7. H. Melosh, “Giant impacts and the thermal state of the early Earth,” in Origin of the Earth, Ed. by H. Newsom and J. Jones (Oxford University Press, 1990), pp. 69–83.

    Google Scholar 

  8. J. Li and C. B. Agee, “Geochemistry of mantle-core differentiation at high pressure,” Nature 381, 686–689 (1996).

    Article  Google Scholar 

  9. K. Righter and M. J. Drake, “Metal/silicate equilibrium in the early Earth-New constraints from the volatile moderately siderophile elements Ga, Cu, P, and Sn,” Geochim. Cosmochim. Acta 64, 3581–3597 (2000).

    Article  Google Scholar 

  10. B. J. Wood, M. J. Walter, and J. Wade, “Accretion of the Earth and segregation of its core,” Nature 441, 825–833 (2006).

    Article  Google Scholar 

  11. E. M. Galimov, “Redox evolution of the Earth caused by a multi-stage formation of its core,” Earth Planet. Sci. Lett. 233, 263–276 (2005).

    Article  Google Scholar 

  12. A. A. Kadik, F. Pineau, Y. A. Litvin, N. Jendrzejewski, I. Martinez, and M. Javoy, “Formation of carbon and hydrogen species in magmas at low oxygen fugacity during fluid-absent melting of carbon-bearing mantle,” J. Petrol. 45(7), 1297–1310 (2004).

    Article  Google Scholar 

  13. A. A. Kadik, N. A. Kurovskaya, Yu. A. Ignat’ev, N. N. Kononkova, V. V. Koltashev, and V. G. Plotnichenko, “Influence of oxygen fugacity on the solubility of carbon and hydrogen in FeO-Na2O-SiO2-Al2O3 melts in equilibrium with liquid iron at 1.5 GPa and 1400°C,” Geochem. Int. 48(10), 953–960 (2010).

    Article  Google Scholar 

  14. A. A. Kadik, Yu. A. Litvin, V. V. Koltashev, E. B. Kryukova, V. G. Plotnichenko, T. I. Tsekhonya, and N. N. Kononkova, “Solution behavior of reduced N-H-O volatiles in FeO-Na2O-SiO2-Al2O3 melt equilibrated with molten Fe alloy at high pressure and temperature,” Phys. Earth Planet. Inter. 214, 14–24 (2013).

    Article  Google Scholar 

  15. B. O. Mysen, M. L. Fogel, G. D. Cody, and P. L. Morrill, “Solution behavior of reduced C-O-H volatiles in silicate melts at high pressure and temperature,” Geochim. Cosmochim. Acta 73, 1696–1710 (2009).

    Article  Google Scholar 

  16. B. O. Mysen, K. Kumamoto, G. D. Cody, and M. L. Fogel, “Solubility and solution mechanisms of C-O-H volatiles in silicate melt with variable redox conditions and melt composition at upper mantle temperatures and pressures,” Geochim. Cosmochim. Acta 75, 6183–6199 (2011).

    Article  Google Scholar 

  17. B. O. Mysen, “Silicate-COH melt and fluid structure, their physicochemical properties, and partitioning of nominally refractory oxides between melts and fluids,” Lithos 148, 228–246 (2012).

    Article  Google Scholar 

  18. M. M. Hirschmann, A. C. Withers, P. Ardia, and N. T. Foley, “Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets,” Earth Planet. Sci. Lett. 345–348, 38–48 (2012).

    Article  Google Scholar 

  19. P. Ardia, M. M. Hirschmann, A. C. Withers, and B. D. Stanley, “Solubility of CH4 in a synthetic basaltic melt, with applications to atmosphere-magma ocean-core partitioning of volatiles and to the evolution of the Martian atmosphere,” Geochim. Cosmochim. Acta 114, 52–71 (2013).

    Article  Google Scholar 

  20. R. Dasgupta, H. Chi, N. Shimizu, A. S. Buono, and D. Walker, “Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: implications for the origin and distribution of terrestrial carbon,” Geochim. Cosmochim. Acta 102, 191–212 (2013).

    Article  Google Scholar 

  21. D. T. Wetzel, S. D. Jacobsen, M. J. Rutherford, E. H. Hauri, and A. E. Saal, “Degassing of reduced carbon from planetary basalts,” Proc. Natl. Acad. Sci. http://dx.doi.org/10.1073/pnas.1219266110.

  22. B. D. Stanley, M. M. Hirschmann, and A. C. Withers, “Solubility of C-O-H volatiles in graphite-saturated Martian basalts,” Geochim. Cosmochim. Acta 129, 54–76 (2014).

    Article  Google Scholar 

  23. J. R. Holloway, “Volatile interactions in magmas,” in Thermodynamics of Minerals and Melts. Advances in Physical Geochemistry, Ed. by R.S. Newton, A. Navrotsky, and B.J. Wood (Springer, New York, 1981), pp. 273–293.

    Chapter  Google Scholar 

  24. S. C. Kohn, R. A. Brooker, and R. Dupree, “13C MAS NMR: a method for studying CO2 speciation in glasses,” Geochim. Cosmochim. Acta 55, 3879–3884 (1991).

    Article  Google Scholar 

  25. R. A. Brooker, S. C. Kohn, J. R. Holloway, and P. F. McMillan, “Structural controls on the solubility of CO2 in silicate melts. Part I: bulk solubility data,” Chem. Geol. 174, 225–239 (2001).

    Article  Google Scholar 

  26. Y. Morizet, M. Paris, F. Gaillard, and B. Scaillet, “C-O-H fluid solubility in haplobasalt under reducing conditions: an experimental study,” Chem. Geol. 279, 1–16 (2010).

    Article  Google Scholar 

  27. J. R. Holloway and S. Jakobsson, “Volatile solubilities in magmas: transport of volatiles from mantles to planet surface,” J. Geophys. Res. 91(B4), D505–D508 (1986).

    Article  Google Scholar 

  28. R. W. Luth, B. O. Mysen, and D. Virgo, “Raman spectroscopic study of the behavior of H2 in the system Na2O-Al2O3-SiO2-H2,” Am. Mineral. 72, 481–486 (1987).

    Google Scholar 

  29. W. R. Taylor and D. H. Green, “The petrogenetic role of methane: effect on liquidus phase relations and the solubility mechanisms of reduced C-H volatiles,” in Magmatic Processes: Physicochemical Principles, Ed. by B.O. Mysen, Geochem. Soc. Sp. Publ. 1, 121–138 (1987).

    Google Scholar 

  30. A. A. Kadik, N. A. Kurovskaya, Yu. A. Ignat’ev, N. N. Kononkova, V. V. Koltashev, and V. G. Plotnichenko, “Influence of oxygen fugacity on the solubility of nitrogen, carbon, and hydrogen in FeO-Na2O-SiO2-Al2O3 melts in equilibrium with metallic iron at 1.5 GPa and 1400°C,” Geochem. Int., 49(5), 429–438 (2011).

    Article  Google Scholar 

  31. M. Javoy, E. Kaminski, F. Guyot, D. Andrault, C. Sanloup, M. Moreiraa, S. Labrosse, A. Jambon, P. Agrinier, A. Davaille, and C. Jaupart, “The chemical composition of the Earth: enstatite chondrite models,” Earth Planet. Sci. Lett. 293, 259–268 (2010).

    Article  Google Scholar 

  32. D. J. Frost, U. Mann, Y. Asahara, and D. C. Rubie, “The redox state of the mantle during and just after core formation,” Phil. Trans. Royal Soc. A366, 4315–4337 (2008).

    Article  Google Scholar 

  33. Yu. A. Litvin, “Distribution of pressure up to 40 kbar and temperature up to 1500°C in the solid-state cell of large useful volume,” Instruments and Technics for Experiment, No. 5, 207–209 (1979).

    Google Scholar 

  34. Yu. A. Litvin, Physicochemical Study of Melting Relations of Deep-Seated Substance, (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  35. S. R. Bohlen and A. L. Boettcher, “The quartz-coesite transformation: a precise determination and the effects of other components,” J. Geophys. Res. 87, 7073–7078 (1982).

    Article  Google Scholar 

  36. I.-M. Chou, “Oxygen buffer and hydrogen sensor technique at elevated pressures and temperatures,” in Hydrothermal Experimental Techniques, Ed. by H.L. Barnes and G.C. Ulmer (Wiley, New York, 1987), pp. 61–99.

    Google Scholar 

  37. H. S. C. O’Neill and M. I. Pownceby, “Thermodynamic data from redox reactions at high temperatures: I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes with revised values for the Fe-“FeO”, Co-CoO, Ni-NiO, and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer,” Contrib. Mineral. Petrol. 114, 296–314 (1993).

    Article  Google Scholar 

  38. W. R. Taylor and S. F. Foley, “Improved oxygen-buffering techniques for C-O-H fluid-saturated experiments at high pressure,” Geophys. Res. Lett. 94(B4), 4146–4158 (1989).

    Article  Google Scholar 

  39. H. P. Eugster and D. R. Wones, “Stability relations of the ferruginous biotite, annite,” J. Petrol. 3, 82–125 (1962).

    Article  Google Scholar 

  40. V. K. Smirnov, A. V. Sobolev, V. G. Batanova, M. V. Portnyagin, S. G. Simakin, and E. V. Potapov, “Quantitative SIMS analysis of melt inclusions and host minerals for trace elements and H2O,” EOS Trans. Spring Meet. Suppl. AGU, No 76 (17), 270 (1995).

    Google Scholar 

  41. A. V. Sobolev and M. Chaussidon, “H2O concentrations in primary melts from supra-subduction zones and mid-oceanic ridges: implications for H2O storage and recycling in the mantle,” Earth Planet. Sci. Lett. 137, 45–55 (1996).

    Article  Google Scholar 

  42. M. J. Drake, H. E. Newsom, and C. J. Capobianco, “V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the origin of the Moon: experimental studies,” Geochim. Cosmochim. Acta 53, 2101–2111 (1989).

    Article  Google Scholar 

  43. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, 1973).

    Google Scholar 

  44. H. S. C. O’Neill and S. M. Eggins, “The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2, and MoO3 in silicate melts,” Chem. Geol. 186, 151–181 (2002).

    Article  Google Scholar 

  45. A. A. Ariskin, A. A. Borisov, and G. S. Barmina, “Simulating iron-silicate melt equilibrium in basaltic systems,” Geochem. Int. 30, 13–22 (1993).

    Google Scholar 

  46. D. Bouchard and C. W. Bale, “Simultaneous optimization of thermodynamical data for liquid iron alloys containing C, N, Ti, Si, Mn, Si, and P,” Metall. Trans. B. 26B. 467–483 (1995).

    Article  Google Scholar 

  47. C. K. Gessman, B. J. Wood, D. C. Rubie, and M. R. Kilburn, “Solubility of silicon in liquid metal at high pressure: implications for the composition of the Earth’s core,” Earth Planet. Sci. Lett. 184, 367–376 (2001).

    Article  Google Scholar 

  48. A. Ricolleau, Y. Fei, A. Corgne, S. Julien, and J. James Badro, “Oxygen and silicon contents of Earth’s core from high pressure metal-silicate partitioning experiments,” Earth Planet. Sci. Lett. 310, 409–421 (2011).

    Article  Google Scholar 

  49. E. Stolper, “The speciation of water in silicate melts,” Geochim. Cosmochim. Acta 46, 2609–2620 (1982).

    Article  Google Scholar 

  50. S. Newman, E. M. Stolper, and S. Epstein, “Measurement of water in rhyolitic glasses: calibration of an infrared spectroscopic technique,” Am. Mineral. 71, 1527–1541 (1986).

    Google Scholar 

  51. M. Nowak and H. Behrens, “The speciation of water in haplogranitic glasses and melts by in-situ, near-infrared spectroscopy,” Geochim. Cosmochim. Acta 59, 3445–3450 (1995).

    Article  Google Scholar 

  52. E. M. Dianov, M. M. Bubnov, A. N. Gurianov, et al., “Phosphosilicate glass optical fiberes-a promising material for Raman lasers,” in Proc. ECOC 2000, Munich, Germany, 2000 (Munich, 2000), Vol. 3, pp. 135–136.

    Google Scholar 

  53. C. W. Mandeville, J. D. Webster, M. J. Rutherford, B. E. Taylor, A. Timbal, and K. Faure, “Determination of extinction coefficients for infrared absorption bands of H2O in andesitic glasses,” Am. Mineral. 87, 813–820 (2002).

    Google Scholar 

  54. G. Fine and E. Stolper, “The speciation of carbon dioxide in sodium aluminosilicate glasses,” Contrib. Mineral. Petrol. 91, 105–112 (1985).

    Article  Google Scholar 

  55. R. Cataliotti and R. N. Jones, “Further evidence of Fermi resonance in the C-O stretching band of cyclopentanone,” Spectrochim. Acta 27, 2011–2013 (1971).

    Article  Google Scholar 

  56. J. E. Shelby, “Protonic species in vitreous silica,” J. Non-Cryst. Solids 179, 138–147 (1994).

    Article  Google Scholar 

  57. B. C. Schmidt, “Incorporation of H2 in vitreous silica, qualitative and quantitative determination from Raman and infrared spectroscopy,” J. Non-Cryst. Solids 240, 91–103 (1998).

    Article  Google Scholar 

  58. E. M. Dianov, V. V. Koltashev, S. N. Klyamkin, A. R. Malosiev, O. I. Medvedkov, V. G. Plotnichenko, A. A. Rybaltovskii, A. O. Rybaltovskii, V. O. Sokolov, and S. A. Vasiliev, “Hydrogen diffusion and ortho-para conversion in absorption and Raman spectra of germanosilicate optical fibers hydrogen-loaded at 150–170 MPa,” J. Non-Cryst. Solids 351(49–51), 3677–3684 (2005).

    Google Scholar 

  59. C. G. Pouchert, The Aldrich Library of Infrared Spectra, 3rd Ed. (Aldrich Chemical Co, 1981).

    Google Scholar 

  60. B. O. Mysen and D. Virgo, “Volatiles in silicate melts at high pressure and temperature: 2. Water in melts along the join NaAlO2-SiO2 and a comparison of solubility mechanisms of water and fluorine,” Chem. Geol., 57, 333–358 (1986).

    Article  Google Scholar 

  61. J. D. Pasteris, J. C. Seitz, B. Wopenka, and I.-M. Chou, “Recent advances in the analysis and interpretation of C-O-H-N fluids by application of laser Raman microspectroscopy,” in Microbeam Analysis, Ed. by R. H. Geiss (San Francisco Press Inc., San Francisco, 1990), pp. 228–234.

    Google Scholar 

  62. J. C. Seitz, J. D. Pasteris, and B. Wopenka, “Characterization of CO2-CH4-H2O fluid inclusions by microthermometry and laser Raman microprobe spectroscopy: inferences for chlatrate and fluid equilibria,” Geochim. Cosmochim. Acta 51, 1651–1664 (1987).

    Article  Google Scholar 

  63. J. Dubessy, A. Moissette, R. J. Bakker, J. D. Frantz, and Y. G. Zhang, “High-temperature Raman spectroscopic study of H2O-CO2-CH4 mixtures in synthetic fluid inclusions: first insights on molecular interactions and analytical implications,” Eur. J. Mineral. 11, 23–32 (1999).

    Article  Google Scholar 

  64. J. Dubessy, S. Buschaert, W. Lamb, J. Pironon, and R. Thiery, “Methane-bearing aqueous fluid inclusions: Raman analysis, thermodynamic modeling and application to petroleum basins,” Chem. Geol. 173, 193–205 (2001).

    Article  Google Scholar 

  65. B. O. Mysen and S. Yamashita, “Speciation of reduced C-O-H volatiles in coexisting fluids and silicate melts determined in-situ to 1.4 GPa and 800°C,” Geochim. Cosmochim. Acta 74, 4577–4588 (2010).

    Article  Google Scholar 

  66. G. Socrates, Infrared and Raman Characteristic Group Frequencies-Tables and Charts (Wiley, New York, 2001).

    Google Scholar 

  67. P. Lespade,, R. Al-Jishi, and M. S. Dresselhaus, “Model for Raman scattering from incompletely graphitized carbons,” Carbon 5, 427–431 (1982).

    Article  Google Scholar 

  68. J. N. Rouzaud, A. Oberelin, and C. Beny-Baddez, “Carbon films structure and microtexture (optical and electron microscopy, Raman spectroscopy),” Thin Solid Films 105, 75–96 (1983).

    Article  Google Scholar 

  69. P. H. Tan, S. Domovski, and Yu. Gogotsi, “Raman scattering of non-planar graphite: arched edges, polyhedral crystals, whiskers and cones,” Phil. Trans. R. Soc. London A362, 2289–2310 (2004).

    Article  Google Scholar 

  70. M. M. Hirschmann and A. C. Withers, “Ventilation of CO2 from a reduced mantle and consequences for the early Martian greenhouse,” Earth Planet. Sci. Lett. 270, 147–155 (2008).

    Article  Google Scholar 

  71. B. O. Mysen, S. Yamashita, and N. Cherikova, “Solubility and solution mechanisms of NOH volatiles in silicate melts at high pressure and temperature-amine groups and hydrogen fugacity,” Am. Mineral. 93, 1760–1770 (2008).

    Article  Google Scholar 

  72. M. R. Carrol and J. D. Webster, “Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas,” in Volatiles in Magmas, Rev. Mineral. 30, 231–279 (1994).

    Google Scholar 

  73. B. Mysen and P. Richet, “Silicate glasses and melts: properties and structure,” in Developments in Geochemistry (Elsevier, 2005), Vol. 10, ch. 16.

  74. J. E. Dixon, E. M. Stolper, and J. R. Holloway, “An experimental study of H2O and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility results,” J. Petrol. 36, 1607–1631 (1995).

    Google Scholar 

  75. M. Mercier, A. Di Muro, N. Metrich, D. Giordano, Belhadj Olfa, and Ch. W. Mandeville, “Spectroscopic analysis (FTIR, Raman) of water in mafic and intermediate glasses and glass inclusions,” Geochim. Cosmochim. Acta 74, 5641–5656 (2010).

    Article  Google Scholar 

  76. H. Behrens and A. Stuke, “Quantification of H2O contents in silicate glasses using IR spectroscopy-a calibration based on hydrous glasses analyzed by Karl-Fischer titration,” Glass Sci. Techn. 76, 176–189 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kadik.

Additional information

Original Russian Text © A.A. Kadik, V.V. Koltashev, E.B. Kryukova, V.G. Plotnichenko, T.I. Tsekhonya, N.N. Kononkova, 2014, published in Geokhimiya, 2014, No. 9, pp. 771–790.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadik, A.A., Koltashev, V.V., Kryukova, E.B. et al. Solution behavior of C-O-H volatiles in FeO-Na2O-Al2O3-SiO2 melts in equilibrium with liquid iron alloy and graphite at 4 GPa and 1550°C. Geochem. Int. 52, 707–725 (2014). https://doi.org/10.1134/S0016702914090067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702914090067

Keywords

Navigation