Skip to main content
Log in

Geochemistry of metamorphic processes in mafic rocks of the Krasnaya Guba area, Belomorian Mobile Belt

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

New data are obtained on the major-component and minor- and trace-element composition of metamorphosed gabbronorites and Fe-Ti gabbro in the Krasnaya Guba area, Belomorian Mobile Belt. These two magmatic complexes, which are spatially combined but are of different age and were produced in different geodynamic environments, were simultaneously metamorphosed in the Paleoproterozoic to parameters transitional between the amphibolite and eclogite facies. Eclogite metamorphism was associated with perceivable changes in the concentrations of alkalis and alkali earth elements, and the metamorphic transformation of the plagioclase eclogite (which can be metamorphosed gabbronorite and/or gabbro) into amphibolite and biotite amphibolite was associated with changes in the concentrations of practically all trace elements. This implies that the metamorphic processes were not isochemical and were accompanied by significant removal and introduction of incompatible elements. However, some trace-element ratios (such as Ti/Y, Ti/Zr, Zr/Y, La/Sm, and Nb/Th) remained unmodified in the course of metamorphism and remained the same as in the pristine gabbronorite or gabbro and likely can be employed as indicators of the composition of the probable protolith and the conditions under which it was produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Makrygina, Geochemistry of Regional Metamorphism and Ultrametamorphism of Moderate and Low Pressures (Nauka, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  2. I. D. Ryabchikov, P. Suddaby, A. V. Girnis, V. S. Kulikov, V. V. Kulikova, and O. A. Bogatikov, “Trace-element geochemistry of Archaean and Proterozoic rocks from eastern Karelia, U.S.S.R,” Lithos 21, 183–194 (1988).

    Article  Google Scholar 

  3. I. S. Puchtel, K. M. Haase, A. W. Hofmann, C. Chauvel, V. S. Kulikov, C.-D. Garbe-Schonberg, and A. A. Nemchin, “Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetrenyi Belt, southeastern Baltic Shield: evidence for an Early Proterozoic mantle plume beneath rifted Archean continental lithosphere,” Geochim. Cosmochim. Acta 61(6), 1205–1222 (1997).

    Article  Google Scholar 

  4. I. S. Puchtel, N. T. Arndt, A. W. Hofmann, K. M. Haase, A. Kroner, V. S. Kulikov, V. V. Kulikova, C.-D. Garbe-Schonberg, and A. A. Nemchin, “Petrology of mafic lavas within the Onega Plateau, Central Karelia: evidence for 2.0 Ga plume-related continental crustal growth in the Baltic Shield,” Contrib. Mineral. Petrol. 130, 134–153 (1998).

    Google Scholar 

  5. V. S. Kulikov, Ya. V. Bychkova, V. V. Kulikova, Yu. F. Kostitsyn, O. S. Pokrovskii, and M. V. Vasil’ev, “The Ruiga intrusion: a typical example of a shallow-facies Paleoproterozoic peridotite-gabbro-komatiite-basaltic association of the Vetreny Belt, southeastern Fennoscandia,” Petrology 16(6), 531–551 (2008).

    Article  Google Scholar 

  6. M. L. Frezzoti, B. Cesare, and M. Scambelluri, “Fluids at extreme P-T metamorphic conditions: the message from high-grade rocks,” Period. Mineral. 73, 209–219 (2004).

    Google Scholar 

  7. H. Austrheim, “Eclogitization of lower crustal granulites by fluid migration through shear zones,” Earth Planet. Sci. Lett. 81(2–3), 221–232 (1987).

    Article  Google Scholar 

  8. T. Andersen, H. Austrheim, and E. A. J. Burke, “Mineral-fluid-melt interactions in high-pressure shear zones in the Bergen Arcs Nappe Complex, Caledonides of W. Norway: implications for the fluid regime in Caledonian eclogite-facies metamorphism,” Lithos 27(3), 187–204 (1991).

    Article  Google Scholar 

  9. L. Ya. Aranovich, N. S. Bortnikov, S. A. Bushmin, O. V. Vikent’eva, E. O. Dubinina, V. M. Kozlovskii, and Yu. M. Lebedeva, “Fluid flows in regional deformation zones,” Petrology 17(4), 389–409 (2009).

    Article  Google Scholar 

  10. V. V. Travin and N. E. Kozlova, “Local shear deformations as a cause of eclogitization: evidence from the Gridino Melange Zone, Belomorian Mobile Belt,” Dokl. Earth Sci. 405A(9), 1275–1278 (2005).

    Google Scholar 

  11. V. M. Kozlovsky and L. Ya. Aranovich, “Geological and structural conditions of eclogitization of Paleoproterozoic basic dikes in the eastern Belomorian Mobile Belt,” Geotectonics, 42(4), 305–317 (2008).

    Article  Google Scholar 

  12. V. M. Kozlovsky and L. Ya. Aranovich, “Petrology and thermobarometry of eclogite rocks in the Krasnaya Guba dike field, Belomorian Mobile Belt,” Petrology 18(1), 27–49 (2010).

    Article  Google Scholar 

  13. A. I. Slabunov, Geology and Geodynamics of the Archean Mobile Belts with Reference to the Belomorian Province of the Baltic Shield (Petrozavodsk, 2008) [in Russian].

    Google Scholar 

  14. V. S. Stepanov, Precambrian Mafic Magmatism of the West Belomorian Mobile Belt (Nauka, Leningrad, 1981) [in Russian].

    Google Scholar 

  15. A. V. Stepanova, A. N. Larionov, E. V. Bibikova, V. S. Stepanov, and A. I. Slabunov, “Early Proteorozoic (2.1 Ga) Fe-tholeiitic magmatism of the Belomorian Province, Baltic Shield: geochemistry and geochronology,” Dokl. Earth Sci. 390(4), 607–610 (2003).

    Google Scholar 

  16. V. V. Balaganskii, V. N. Glaznev, and L. G. Osipenko, “The Early Proterozoic evolution of the northeastern Baltic Shield: a terrane analysis,” Geotectonics, 32(2), 81–92 (1998).

    Google Scholar 

  17. Early Precambrian of the Baltic Shield, Ed. by V.A. Glebovitskii (Nauka, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  18. V. S. Stepanov and A. V. Stepanova, “Early Paleoproterozoic metagabbro from the Gridino area (Belomorian mobile belt),” in Geology and Minerals of Karelia (Petrozavodsk, 2006), No. 9, pp. 55–71 [in Russian].

    Google Scholar 

  19. A. I. Slabunov, O. I. Volodichev, V. V. Balaganskii, E. V. Bibikova, V. S. Stepanov, and A. V. Stepanova, Belomorian Mobile Belt and Its Analogues: Geology, Geochronology, Geodynamics, and Metallogeny (Petrozavodsk, 2005) [in Russian].

    Google Scholar 

  20. R. Kretz, “Symbols for rock-forming minerals,” Am. Mineral. 68, 277–279 (1983).

    Google Scholar 

  21. S. P. Korikovsky, “Prograde transformations of gabbronorites during eclogitization in the temperature range 600–700°C,” Russ. Geol. Geophys. 46(12), 1333–1348 (2005).

    Google Scholar 

  22. J. C. Schumacher, “The estimation of ferric iron in electron microprobe analysis of amphiboles,” Eur. J. Mineral. 9, 643–651 (1997).

    Google Scholar 

  23. S. P. Korikovsky, “Prograde transformations of medium-pressure amphibolites during their eclogitization,” Petrology 17(4), 315–330 (2009).

    Article  Google Scholar 

  24. S. A. Bushmin and V. A. Glebovitskii, “Scheme of mineral facies of metamorphic rocks,” Zap. Ross. Mineral. O-va 137(2), 1–13 (2008).

    Google Scholar 

  25. S. S. Sun and W. F. McDonough, “Chemical and isotope systematics of ocean basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Ed. by A.D. Saunders and M.J. Norry, Geol. Soc. Lond. Spec. Publ. 42, 313–345 (1989).

    Google Scholar 

  26. P. W. O. Hoskin and U. Schaltegger, “The composition of zircon and igneous and metamorphic petrogenesis,” Ed. by J.M. Hanchar and P.W.O. Hoskin, Rev. Mineral. Geochem., 53, 27–62 (2003).

    Article  Google Scholar 

  27. G. Meinhold, “Rutile and its applications in Earth sciences,” Earth-Sci. Rev. 102, 1–28 (2010).

    Article  Google Scholar 

  28. L. F. Borisenko and L. N. Komissarova, Mineral Raw Sources of Scandium and Technology of Its Extraction (Moscow, 1989) [in Russian].

    Google Scholar 

  29. N. T. Arndt, “Komatiites: a dirty window to the Archaean mantle,” Terra Cognita 6, 59–66 (1986).

    Google Scholar 

  30. L. Ya. Aranovich and V. M. Kozlovsky, “The role of silica mobility in the formation of “incipient” eclogites,” Geochem. Int. 47(2), 199–204 (2009).

    Article  Google Scholar 

  31. T. L. Larikova, “Genesis of drusitic (corona) textures around olivine and orthopyroxene during metamorphism of gabbroids in northern Belomorie, Karelia,” Petrology 8(4), 384–401 (2000).

    Google Scholar 

  32. T. L. Larikova and G. P. Zaraisky, “Experimental modelling of corona textures,” J. Metamorph. Geol. 27, 139–151 (2009).

    Article  Google Scholar 

  33. N. A. Krivolutskaya, V. F. Smol’kin, N. M. Svirskaya, V. P. Mamontov, A. S. Fanygin, B. V. Belyatskii, and I. A. Roshchina, “Geochemical features of the drusite massifs, the central part of the Belomorian Mobile Belt: I. Distribution of major and trace elements in the rocks,” Geochem. Int. 48(5), 465–491 (2010).

    Article  Google Scholar 

  34. N. M. Evensen, P. J. Hamilton, and R. K. O’Nions, “Rare-earth abundance in chondritic meteorites,” Geochim. Cosmochim. Acta 42(8), 1199–1212 (1978).

    Article  Google Scholar 

  35. H.-F. Tang, C.-Q. Liu, S. Nakai, and Y. Orihashi, “Geochemistry of eclogites from the Dabie-Sulu Terrane, Eastern China: new insights into protoliths and trace element behavior during UHP metamorphism,” Lithos 95, 441–457 (2007).

    Article  Google Scholar 

  36. L. I. Khodorevskaya, “Fluid regime and the behavior of ore, trace, and rare-earth elements during granitization of metagabbro-norites of the Belomorian Group (Gorelyi Island, Kandalaksha Bay),” Petrology 17(4), 371–388 (2009).

    Article  Google Scholar 

  37. B. Jahn, X. Liu, T.-F. Yui, N. Morin, and M. Bouhnik-Le Coz, “High-pressure/ultrahigh-pressure eclogites from the Hong’an Block, east-central China: geochemical characterization, isotope disequilibrium and geochronological controversy,” Contrib. Mineral. Petrol. 149, 499–526 (2005).

    Google Scholar 

  38. K. V. Kulikova, “Rare-earth elements in the rocks and minerals from eclogites of the Slyudyanka Gorka area, Marunkeu Range, Polar Urals,” Tr. Inst. Geologii, Komi NTs UrO RAN, No. 119, 115–124 (2005).

    Google Scholar 

  39. V. M. Kozlovsky and D. I. Korpechkov, “Mineralogical zoning of Svecofennian plagiomigmatites of the Belomorian Complex,” in Belomorian Mobile Belt and its Analogues: Geology, Geochronology, Geodynamics, and Metallogeny (Petrozavodsk, 2005), pp. 181–183 [in Russian].

    Google Scholar 

  40. G. L. Farmer, “Continental Basaltic Rocks,” Treatise on Geochemistry 3, 85–121 (2003).

    Google Scholar 

  41. J. A. Pearce, “Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for archean oceanic crust,” Lithos 100, 14–48 (2008).

    Article  Google Scholar 

  42. V. I. Kovalenko, V. B. Naumov, A. V. Girnis, V. A. Dorofeeva, and V. V. Yarmolyuk, “Canonical ratios of trace element in basic magmas of various geodynamic settings: estimation from compositions of melt inclusions and rock glasses,” Dokl. Earth Sci. 426(4), 611–614 (2009).

    Article  Google Scholar 

  43. I. D. Ryabchikov, Th. Ntaflos, A. Buchl, and I. P. Solovova, “Subalkaline picrobasalts and plateau basalts from Putorana Plateau (Siberian CFB Province). I. Mineral compositions and geochemistry of major and trace elements,” Geochem. Int., 39(5), 467–483 (2001).

    Google Scholar 

  44. L. M. Larsen, A. K. Pedersen, B. Sundvoll, and R. Frey, “Alkali picrites formed by melting of old metasomatized lithospheric mantle: Manitdlat Member, Vaigat Formation, Palaeocene of West Greenland,” J. Petrol. 44, 3–38 (2003).

    Article  Google Scholar 

  45. I. T. Rass and A. A. Nosova, “Continental flood basalts and related picrites in large igneous provinces: geochemical features,” in Micro-Analysis, Processes, Time (MAPT). Annual Meeting of the Mineralogical Society. Programme and Abstracts, Edinburgh, England, 2009 (Edinburgh, 2009), pp. 102–103 (2009).

    Google Scholar 

  46. A. V. Stepanova, “Early Proterozoic dolerite dikes in the northern part of the Karelian Craton: geology, geochemistry, and petrology,” in Geology and Minerals of Karelia (Petrozavodsk, 2004), No. 7, pp. 34–43 [in Russian].

    Google Scholar 

  47. A. V. Stepanova, A. V. Samsonov, Yu. B. Shapovalov, and V. S. Stepanov, “Low-Ti MORB-type tholeiites as indicator of diffuse spreading of the Neoarchean crust of the Karelian Province in the Middle Paleoproterozoic,” in Modern State of the Earth’s Science. Proceedings of International Conference in Memory of V.E. Khain, Moscow, Russia, 2011 (Moscow, 2011), pp. 1784–1787 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. T. Rass.

Additional information

Original Russian Text © I.T. Rass, L.Ya. Aranovich, D.I. Korpechkov, V.M. Kozlovskii, 2014, published in Geokhimiya, 2014, No. 8, pp. 734–750.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rass, I.T., Aranovich, L.Y., Korpechkov, D.I. et al. Geochemistry of metamorphic processes in mafic rocks of the Krasnaya Guba area, Belomorian Mobile Belt. Geochem. Int. 52, 670–686 (2014). https://doi.org/10.1134/S0016702914060068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702914060068

Keywords

Navigation