Skip to main content
Log in

Thermodynamic properties of Fe-rich smectite-nontronite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The results of thermochemical studies are reported for nontronite samples from the Pinares-de-Majari (Eastern Cuba) (Sample I) and Kempirsai serpentine massif (South Urals, Kazakhstan) (Sample II). The enthalpies of formation of dehydrated hydroxyl-bearing nontronites from elements were determined by melt dissolution calorimetry using high-temperature heat-flux Tiana-Calvet microcalorimeter: Δ f H oel (298.15 K): −4958 ± 13 kJ/mol for Mg0.4(Fe 3+1.5 Mg0.4Ni0.1)[Si3.7Al0.3O10](OH)2 (I) and −5003.6 ± 8.0 kJ/mol for Mg0.3Na0.1Ca0.1(Fe 3+1.4 Mg0.5Ni0.1)[Si3.7Al0.3O10](OH)2 (II). It was determined experimentally that the enthalpy of dehydration (removal of molecular adsorption and interlayer water) of the studied nontronites is 6 ± 2 kJ per 1 mole H2O. The enthalpy of formation of nontronite of theoretical composition Mg0.15Fe 3+2 [Si3.7Al0.3]O10(OH)2 was estimated at −4750 kJ/mol. The Gibbs free energies of formation of the nontronites were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Guven, “Smectites,” in Hydrous Phyllosilicates, Ed. by S.W. Bailey, Rev. Mineral. 19, 497–560 (1988).

    Google Scholar 

  2. R. L. Frost, J. T. Kloprogge, and Z. Ding, “The Garfield and Uley nontronites-an infrared spectroscopic comparison,” Spectrochim. Acta. Part A 58, 1881–1894 (2002).

    Article  Google Scholar 

  3. I. V. Vitovskaya, “Nontronite: structure and genesis,” in Weathering Crust (Nauka, Moscow, 1986), Vol. 19, pp. 26–31 [in Russian].

    Google Scholar 

  4. R. L. Frost, H. Ruan, and J. T. Kloprogge, “Dehydration and dehydroxylation of nontronites and ferruginous smectites,” Thermochim. Acta 346, 63–72 (2000).

    Article  Google Scholar 

  5. Z. Ding and R. L. Frost, “Controlled rate thermal analysis of nontronite,” Thermochim. Acta 389, 185–193 (2002).

    Article  Google Scholar 

  6. G. Sarazin and G. Michard, “Remarques sur les enthalpies libres de formation des smectites,” C. r. Sci. D. 285(5), 487–490 (1977).

    Google Scholar 

  7. P. Vieillard, “A new method for the prediction of Gibbs free energies of formation of hydrated clay minerals based on the electronegativity scale,” Clays Clay Miner. 48(4), 459–473 (2000).

    Article  Google Scholar 

  8. Yu. Yu. Bugel’skii and F. F. Formel’-Kortina, “Formation-genetic classification of nickel deposits of Cuba,” in Weathering Crust (Nauka, Moscow, 1986), Vol. 19, pp. 100–106 [in Russian].

    Google Scholar 

  9. I. V. Vitovskaya and Yu. Yu. Bugel’skii, Nickel-Bearing Weathering Crust (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  10. V. A. Drits and A. G. Kossovskaya, Clay Minerals: Smectites and Mixed Layer Minerals (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  11. D. Moore and R. C. Reynolds, Jr., X-Ray Diffraction and the Identification and Analysis of Clay Minerals (Oxford University, New York, 1997).

    Google Scholar 

  12. R. Green-Kelly, “The identification of montmorillonite in clays,” J. Soil Sci. 4, 233–237 (1953).

    Google Scholar 

  13. X-Ray Diffraction Analysis of the Major Types of Rock-Forming Minerals, Ed. by V.A. Frank-Kamenetskii (Nedra, Moscow, 1983) [in Russian].

    Google Scholar 

  14. H. H. Moenke, Mineralspektren (Akad. Verlag, Berlin, 1962).

    Google Scholar 

  15. H. W. Van der Marel and H. Beutelspacher, Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures (Elsevier, Amsterdam-Oxford-New York, 1976).

    Google Scholar 

  16. I. Rozenson and L. Heller-Kallai, “Reduction and oxidation of Fe3+ in dioctahedral smectites-1: reduction with hydrazine and dithionite,” Clays Clay Miner. 24, 271–282 (1976).

    Article  Google Scholar 

  17. B. A. Goodman, J. D. Russell, A. R. Fraser, and F. W. D. Woodhams, “A Mossbauer and I.R. spectroscopic study of structure of nontronite,” Clays Clay Miner. 24, 53–59 (1976).

    Article  Google Scholar 

  18. R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298. 15 K and 1 bar (105 pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull., No. 2131 (1995).

    Google Scholar 

  19. I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical study of the CaO-MgO-SiO2 system,” Geokhimiya, No. 12, 1811–1825 (1979).

    Google Scholar 

  20. I. A. Kiseleva, “Thermodynamic properties and stability of pyrope,” Geokhimiya, No. 6, 845–854 (1976).

    Google Scholar 

  21. I. A. Kiseleva, L. P. Ogorodova, V. V. Krupskaya, L. V. Melchakova, M. F. Vigasina, and I. Luse, “Thermodynamics of the kaolinite-group minerals,” Geochem. Int. 49(8), 793–801 (2011)

    Article  Google Scholar 

  22. I. A. Kiseleva, A. Navrotsky, I. A. Belitsky, and B. A. Fursenko, “Thermochemical study of calcium zeolites-heulandite and stilbite,” Am. Mineral. 86, 448–455 (2001).

    Google Scholar 

  23. J. DiCarlo, I. Yazdi, A. J. Jocobson, and A. Navrotsky, “Preparation and thermochemical properties of BaNiO2 + x,” J. Solid State Chem. 109, 223–226 (1994).

    Article  Google Scholar 

  24. A. Navrotsky and W. J. Coons, “Thermochemistry of some pyroxenes and related compounds,” Geochim. Cosmochim. Acta 40, 1281–1295. (1976).

    Article  Google Scholar 

  25. L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical study of natural pollucite,” Thermochim. Acta 403, 251–256 (2003).

    Article  Google Scholar 

  26. L. P. Ogorodova, I. A. Kiseleva, L. V. Melchakova, M. F. Vigasina, and E. M. Spiridonov, “Calorimetric determination of the enthalpy of formation for pyrophyllite,” R. J. Phys. Chem. A 85(9), 1489–1491 (2011).

    Google Scholar 

  27. H. Gailhanou, J. C. van Miltenberg, J. Rogez, J. Olives, M. Amouric, E. C. Gaucher, and P. Blanc, “Thermodynamic properties of anhydrous smectite MX-80, illite IMt-2 and mixed-layer illite-smectite ISCz-1 as determined by calorimetric methods. Part I: Heat capacities, heat contents and entropies,” Geochim. Cosmochim. Acta 71, 5463–5473 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Ogorodova.

Additional information

Original Russian Text © L.P. Ogorodova, I.A. Kiseleva, L.V. Melchakova, M.F. Vigasina, V.V. Krupskaya, Yu.Yu. Bugel’skii, 2014, published in Geokhimiya, 2014, No. 5, pp. 468–475.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogorodova, L.P., Kiseleva, I.A., Melchakova, L.V. et al. Thermodynamic properties of Fe-rich smectite-nontronite. Geochem. Int. 52, 421–427 (2014). https://doi.org/10.1134/S0016702914030057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702914030057

Keywords

Navigation