Skip to main content
Log in

Systematic variations in the composition of volcanic rocks in tectono-magmatic seamount chaines in the Brazil Basin

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Data on the composition of rocks in linear tectono-magmatic rises in the Brazil Basin indicate that volcanic rocks in the Vitoria—Trindade seamount chain were derived from a mantle reservoir unevenly enriched in phosphorus under the effect of melts close to subalkaline picrobasalt. These melts contained much of the EM I mantle component because the plume material was contaminated with continental lithospheric component. A long-lived isotopic homogeneity of the source is typical of the whole structure, including the Trindade and Martin Vaz Islands and the Abrolhos Plateau. The analogous isotopic ratios of rocks at the Fernando de Noronha Islands are reportedly explained by a similar mechanism of melt derivation and the similar evolution of the mantle plume material, which was originally situated beneath the South American continent. Compared to the melts of volcanic rocks of all other seamounts discussed herein, the parental melts of volcanics at the Victoria—Trindade Seamounts were derived at lower degrees of melting of enriched source material at a greater depth. The overwhelming majority of volcanic rocks at the northern chain of the Bahia Seamounts were produced by melts generated with the involvement of material of the HIMU type. At the same time, one of our rock samples was derived from a source of composition close to DM with a certain admixture of enriched material like EM I. The mantle source of rocks of the Pernambuco Seamounts consisted of a mixture of DM and HIMU material with a certain admixture of EM I (or, perhaps, EM II). The 10°–11° S Seamounts were formed near the MAR axial zone at the decompressional melting of chemically homogeneous mantle source that consisted of DM material with an admixture of EM I (or, perhaps, EM II) component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Morgan, “Convection plumes in the lower mantle,” Nature 230, 42–45 (1971).

    Article  Google Scholar 

  2. N. Z. Cherkis, D. A. Chayes, and L. C. Costa, “The bathymetry and distribution of the Bahia seamounts, Brazil Basin,” Mar. Geol. 103, 335–347 (1992).

    Article  Google Scholar 

  3. A. A. Peyve, “Tectonics and magmatism in eastern South America and the Brazil Basin of the Atlantic in the Phanerozoic,” Geotectonics 44 (1), 60–75 (2010).

    Article  Google Scholar 

  4. R. N. Santos and L. S. Marques, “Investigation of 238U-230Th-226Ra and 232Th-228Ra-228Th radioactive disequilibria in volcanic rocks from Trindade and Martin Vaz Islands (Brazil; Southern Atlantic Ocean),” J. Volcanol. Geotherm. Res. 161, 215–233 (2007).

    Article  Google Scholar 

  5. E. C. Alves, M. Maia, S. E. Sichel, and C. M. P. Campos, “Zona de fratura de Vitoria-Trindade no Oceano Atlantico Sudeste E Suas implicacoes tectonicas,” Rev. Bras. Geofisica 24 (1), 117–127 (2006).

    Article  Google Scholar 

  6. R. V. Fodor, S. B. Mukasa, C. B. Gomes, and U. G. Cordani, “Ti-rich Eocene basaltic rocks, Abrolhos platform, offshore Brazil, 18° S: petrology with respect to South Atlantic magmatism,” J. Petrol. 30, 763–786 (1989).

    Article  Google Scholar 

  7. U. G. Cordani, “Idade do vulcanismo no oceano Atlântico Sul,” Boletim IGA, No. 1, 9–75 (1970).

  8. J. Fiori, F. Sobreira, and R. L. Franca, “Um modelo tectono-magmático para a região do complexo vulcanico de Abrolhos a tectono-magmatic model for the Abrolhos volcanic complex region,” B. Geoci. Petrobras. 14 (1), 143–147 (2005).

    Google Scholar 

  9. B. L. Weaver, “Geochemistry of highly undersaturated ocean island basalt suites from the South Atlantic Ocean: Fernando de Noronha and Trindade islands,” Contrib. Mineral. Petrol. 105, 502–515 (1990).

    Article  Google Scholar 

  10. R. Siebel, B. F. Volker, M. A. F. Hansen, J. Viramonte, R. B. Trumbull, G. Haase, and M. W. Zimmer, “Trindade and Martin Vaz islands, South Atlantic: isotopic (Sr, Nd, Pb) and trace element constraints on plume related magmatism,” J. South Am. Earth Sci. 13, 79–103 (2000).

    Article  Google Scholar 

  11. L. S. Marques, M. N. C. Ulbrich, E. Ruberti, and C. G. Tassinari, “Petrology, geochemistry and Sr-Nd isotopes of the Trindade and Martin Vaz volcanic rocks (Southern Atlantic Ocean),” J. Volcanol. Geotherm. Res 93, 191–216 (1999).

    Article  Google Scholar 

  12. L. N. Kogarko, A. M. Asavin, and V. I. Ryakhovskii, “Typification of primary melts and petrochemical regionalization of the intraplate alkaline magmatism of the Atlantic Ocean,” Dokl. Earth Sci. 385 (5), 574–577 (2002).

    Google Scholar 

  13. L. N. Kogarko, L. K. Levskii, and N. F. Gushchina, “Isotope sources of hot spots in the Trindade and Martin Vaz islands, Southwestern Atlantic,” Dokl. Earth Sci. 393 (8), 1116–1119 (2003).

    Google Scholar 

  14. R. V. Fodor and B. B. Hanan, “Geochemical evidence for the Trindade hotspot trace: Columbia seamount ankaramite,” Lithos 51, 293–304 (2000).

    Article  Google Scholar 

  15. S. G. Skolotnev, A. A. Peyve, and N. N. Turko, “New data on the structure of the Vitoria-Trindade seamount chain (western Brazil Basin, South Atlantic),” Dokl. Earth Sci. 431 (2), 435–440 (2010).

    Article  Google Scholar 

  16. S. G. Skolotnev, M. E. Bylinskaya, L. A. Golovina, and I. S. Ipat’eva, “First data on the age of rocks from the central part of the Vitoria-Trindade ridge (Brazil Basin, South Atlantic),” Dokl. Earth Sci. 437 (1), 316–322 (2011).

    Article  Google Scholar 

  17. S. G. Skolotnev, A. A. Peyve, A. E. Eskin, V. V. Petrova, and I. S. Patina, “New data on the rock composition of the Bahia seamounts (Brazil Basin, South Atlantic Ocean),” Dokl. Earth Sci. 435 (2), 1569–1574 (2010).

    Article  Google Scholar 

  18. S. G. Skolotnev, A. A. Peyve, E. V. Ivanova, I. O. Murdmaa, O. V. Levchenko, and M. E. Bylinskaya, “New data on composition and structure of the Pernambuco seamounts, Brazil Basin, South Atlantic region,” Dokl. Earth Sci. 443 (1), 330–336 (2012).

    Article  Google Scholar 

  19. S. G. Skolotnev, A. A. Peyve, E. V. Ivanova, I. O. Murdmaa, O. V. Levchenko, and O. B. Dmitrenko, “First data about the geochemistry and geological structure of underwater seamounts between Ascension and Bode Verde Transform Fracture zones in the Brazilian Basin (South Atlantic),” Dokl. Earth Sci. 442 (3), 56–62 (2012).

    Article  Google Scholar 

  20. T. N. Irvine and W. R. A. Baragar, “A guide to the chemical classification of the common volcanic rocks,” Can. J. Earth Sci. 8, 523–548 (1971).

    Article  Google Scholar 

  21. M. J. Le Bas, R. W. Le Maitre, A. Streckeisen, and B. A. Zanettin, “Chemical classification of volcanic rocks based on total alkali-silica diagram,” J. Petrol. 27, 745–750 (1986).

    Article  Google Scholar 

  22. R. M. Ellam, “Lithospheric thickness as a control on basalt geochemistry,” Geology 20, 153–156 (1992).

    Article  Google Scholar 

  23. S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. London, Spec. Publ. 42, 313–345 (1989).

    Google Scholar 

  24. B. L. Weaver, D. A. Wood, J. Tarney, and J. L. Joron, “Geochemistry of ocean island basalts from the South Atlantic: Ascension, Bouvet, St. Helena, Gough and Tristan da Cunha,” Geol. Soc. London, Spec. Publ. 30, 253–267 (1987).

    Article  Google Scholar 

  25. V. M. Oversby and P. W. Gast, “The isotopic composition of lead from oceanic islands,” J. Geophys. Res. 75, 2097–2114 (1970).

    Article  Google Scholar 

  26. D. J. Chaffey, R. A. Cliff, and B. M. Wilson, “Characterization on the St. Helena magma source,” Geol. Soc. London, Spec. Publ. 42, 257–276 (1989).

    Article  Google Scholar 

  27. M. Regelous, Y. L. Niu, W. Abouchami, and P. R. Castillo, “Shallow origin for South Atlantic Dupal anomaly from lower continental crust: geochemical evidence from the Mid-Atlantic ridge at 26° S,” Lithos 112, 57–72 (2009).

    Article  Google Scholar 

  28. D. C. Gerlach, J. C. Stormer, and P. A. Mueller, “Isotopic geochemistry of Fernando de Noronha,” Earth Planet. Sci. Lett. 85, 129–144 (1987).

    Article  Google Scholar 

  29. A. Kar, B. Weaver, J. Davidson, and M. Coucci, “Origin of differentiated volcanic and plutonic rocks from Ascension Island, South Atlantic Ocean,” J. Petrol. 39 (5), 1009–1024 (1998).

    Article  Google Scholar 

  30. S.-S. Sun, “Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs,” Trans. R. Soc. (London) 297A, 409–445 (1980).

    Article  Google Scholar 

  31. A. P. Le Roex, R. A. Cliff, and B. J. I. Adair, “Tristan da Cunha, South Atlantic: geochemistry and petrogenesis of a basanite-phonolite lava series,” J. Petrol. 31, 779–812 (1990).

    Article  Google Scholar 

  32. S. H. Richardson, A. J. Erlank, A. R. Duncan, and D. L. Reid, “Correlated Nd, Sr and Pb isotope variation in Walvis Ridge basalts and implications for the evolution of their mantle source,” Earth Planet. Sci. Lett. 59, 327–342 (1982).

    Article  Google Scholar 

  33. C. Harris, J. D. Bell, and F. B. Atkins, “Isotopic composition of lead and strontium in lavas and coarse-grained blocks from Ascension Island, South Atlantic,” Earth Planet. Sci. Lett. 60, 79–85 (1982).

    Article  Google Scholar 

  34. D. Weis, D. Demaiffe, S. Cauet, and M. Javoy, “Sr, Nd, O and H isotopic ratios in Ascension Island lavas and plutonic inclusions: cogenetic origin,” Earth Planet. Sci. Lett. 82, 255–268 (1987).

    Article  Google Scholar 

  35. Structure of the Doldrums Fracture Zone, Central Atlantic (Nauka, Moscow, 1991) [in Russian].

  36. S. A. Silant’ev, Yu. N. Kostitsin, D. V. Cherkashin, et al., “Magmatic and metamorphic evolution of the oceanic crust in the Western Flank of the MAR Crest Zone at 15°44′ N: investigation of cores from sites 1275B and 1275D, JOIDES resolution leg 209,” Petrology 16 (4), 353–375 (2008).

    Article  Google Scholar 

  37. L. N. Kogarko and I. D. Ryabchikov, “Phosphorus in mantle melting,” Dokl. Akad. Nauk 269 (5), 1430–1432 (1983).

    Google Scholar 

  38. P. C. Bryan and N. Z. Cherkis, “The Bahia seamounts: test of a hotspot model and a preliminary South American Late Cretaceous to Tertiary apparent polar wander path,” Tectonophysics 241, 317–340 (1995).

    Article  Google Scholar 

  39. S. G. Skolotnev, A. A. Peyve, and B. V. Belyatskii, “Geological structure and indicators of hydrothermal ore-bearing activity at the junction of the Southern Rift segment and the Doldrums Transform Fracture Zone, Central Atlantic,” Dokl. Earth Sci. 407A (3), 361–365 (2006).

    Article  Google Scholar 

  40. R. A. Duncan and M. A. Richards, “Hotspots, mantle plumes, flood basalts and true polar wander,” J. Geophys. Res. 29 (B1), 31–50 (1991).

    Google Scholar 

  41. B. Steinberger, “Plumes in convecting mantle: models and observations for individual hotspots,” J. Geophys. Res. 105 (B5), 11127–11152 (2000).

    Article  Google Scholar 

  42. S. A. Gibson, R. N. Thompson, R. K. Weska, A. P. Dickin, and O. H. Leonardos, “Late Cretaceous rift-related upwelling and melting of the Trindade starting mantle plume head beneath Western Brazil,” Contrib. Mineral. Petrol. 126, 303–314 (1997).

    Article  Google Scholar 

  43. S. R. Hart, “Heterogeneous mantle domains: signatures, genesis and mixing chronologies,” Earth Planet. Sci. Lett. 90 (3), 273–296 (1988).

    Article  Google Scholar 

  44. A. F. Hofman, “Mantle geochemistry: message from oceanic volcanism,” Nature 385, 219–229 (1997).

    Article  Google Scholar 

  45. D. Fontignie and J. G. Schilling, “Mantle heterogeneities beneath the South Atlantic: a Nd-Sr-Pb isotope study along the Mid-Atlantic Ridge (3°S-46° S),” Earth Planet. Sci. Lett. 142, 109–121 (1996).

    Article  Google Scholar 

  46. D. C. Gerlach, R. A. Cliff, G. R. Davies, M. Norry, N. Hodgson, “Magma sources of the Cape Verde archipelago: isotopic and trace element constraints,” Geochim. Cosmochim. Acta 52, 2979–2992 (1988).

    Article  Google Scholar 

  47. R. Doucelance, S. Escrig, M. Moreira, C. Gariepy, M. D. Kurz, “Pb-Sr-He and trace element geochemistry of the Cape Verde archipelago,” Geochim. Cosmochim. Acta 67, 3717–3733 (2003).

    Article  Google Scholar 

  48. C. J. Hawkesworth, P. D. Kempton, R. M. Rogers, R. M. Ellam, and P. W. Calsteren, “Continental mantle lithosphere and shallow level enrichment processes in the Earth’s mantle,” Earth Planet. Sci. Lett. 96, 256–268 (1990).

    Article  Google Scholar 

  49. K. Hoerlne, G. Tilton, and H. U. Schminke, “Sr-Nd-Pb isotopic evolution of Gran Canaria: evidence for shallow enriched mantle beneath the Canary Islands,” Earth Planet. Sci. Lett. 106, 44–64 (1991).

    Article  Google Scholar 

  50. D. E. James and M. Assumpcao, “Seismic evidence for a fossil mantle plume beneath South America and implications for plate driving forces,” Nature 378, 25–31 (1995).

    Article  Google Scholar 

  51. L. N. Kogarko, V. A. Lebedev, and L. K. Levskii, “Heterogeneity of isotope sources of alkaline magmatism in the hot spot of the Southwestern Atlantic: Fernando de Noronha Islands,” Dokl. Earth Sci. 412 (1), 85–88 (2007).

    Article  Google Scholar 

  52. S. G. Skolotnev, A. A. Peyve, M. E. Bylinskaya, and L. A. Golovina, “Origin and evolution of the seamount linear chains of the Brazil Basin, South Atlantic,” in Geology of Seas and Oceans. Proceedings of 19th International Conference (School) on Marine Geology, Moscow, Russia, 2011 (GEOS, Moscow, 2011), Vol. 5, pp. 269–274 [in Russian].

    Google Scholar 

  53. B. B. Hanan, R. H. Kingsley, and J. G. Schilling, “Pb isotope evidence in the South Atlantic for migrating ridge interactions,” Nature 322, 137–144 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Peyve.

Additional information

Original Russian Text © A.A. Peyve, S.G. Skolotnev, 2014, published in Geokhimiya, 2014, Vol. 52, No. 2, pp. 124–143.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyve, A.A., Skolotnev, S.G. Systematic variations in the composition of volcanic rocks in tectono-magmatic seamount chaines in the Brazil Basin. Geochem. Int. 52, 111–130 (2014). https://doi.org/10.1134/S0016702914020062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702914020062

Keywords

Navigation