Geochemistry International

, Volume 51, Issue 11, pp 876–888 | Cite as

Unusual acid melts in the area of the unique Rosia Montana gold deposit, Apuseni Mountains, Romania: Evidence from inclusions in quartz

  • V. B. Naumov
  • V. A. Kovalenker
  • V. Yu. Prokofiev
  • M. L. Tolstykh
  • G. Damian
  • F. Damian


Crystalline and melt inclusions were studied in large (up to 2 cm across) dipyramidal quartz phenocrysts from Miocene dacites in the area of the Rosia Montana Au-Ag deposit in Romania. Data were obtained on the homogenization of fluid inclusions and the composition of crystalline inclusions and glasses in more than 40 melt inclusions, which were analyzed on a electron microprobe. The minerals identified in the crystalline inclusions are plagioclase (An 51–62), orthoclase, micas (biotite and phengite), zircon, magnetite (TiO2 = 2.8 wt %), and Fe sulfide. Two types of the melts were distinguished when studying the glasses of the melt inclusions. Type 1 of the melts is unusual in composition. The average composition of 20 inclusions is as follows (wt %): 76.1 SiO2, 0.39 TiO2, 6.23 Al2O3, 4.61 FeO, 0.09 MnO, 1.64 MgO, 3.04 CaO, 2.79 Na2O, 3.79 K2O (Na2O/K2O = 0.74), 0.07 P2O5, 0.02 Cl. The composition of type 2 of the melts is typical of acid magmas. The average of 23 inclusion analyses is (wt %) 79.3 SiO2, 0.16 TiO2, 10.27 Al2O3, 0.63 FeO, 0.08 MnO, 0.29 MgO, 1.83 CaO, 3.56 Na2O, 2.79 K2O (Na2O/K2O = 1.28), 0.08 P2O5, 0.05 Cl. The compositions of these melts significantly differ in concentrations of Ti, Al, Fe, Mg, Ca, Na, and K. The high analytical totals of the analyses (close to 100 wt %, more specifically 98.9 and 99.0 wt %, respectively) testify that the melts were generally poor in water. Two inclusions of type 1 and two inclusions of type 2 were analyzed on an ion probe, and their analyses show remarkable differences in the concentrations of certain trace elements. These concentrations (in ppm) are for the melts of types 1 and 2, respectively, as follows: 10.0 and 0.69 for Be, 29.3 and 5.7 for B, 6.4 and 1.4 for Cr, 146 and 6.9 for V, 74 and 18 for Cu, 92 and 29 for Rb, 45 and 15 for Zr, 1.7 and 0.6 for Hf, 10.3 and 2.3 for Pb, and 52 and 1.3 for U. The Th/U ratio of these two melt types are also notably different: 0.04 and 0.19 for type 1 and 2.0 and 2.9 for type 2. These data led us to conclude that the magmatic melts were derived from two different sources. Our data on the melts of type 1 testify that the magmatic chamber was contaminated with compositionally unusual crustal rocks (perhaps, sedimentary, metamorphic, or hydrothermal rocks enriched in Si, Fe, Mg, U, and some other components). This can explain the ore-forming specifics of magmatic chambers in the area.


melt inclusions trace elements Romania 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Cauuet, B. Ancel, Ch. Rico, and C. Tamas, “Ancient mining networks. The French archaeological missions 1999–2001,” Ed. by P. Damian, Alburnus Maior Monograph. Ser. 1, 467–526 (2003).Google Scholar
  2. 2.
    S. L. Manske, J. Hedenquist, G. O’Connor, B. Cauuet, S. Leary, and A. Minut, “Ročia Montanǧ, Romania: Europe’s largest gold deposits,” SEG Newslett., No. 64, 1, 9–15 (2006).Google Scholar
  3. 3.
    Z. Pecskay, O. Edelstein, I. Sehedi, A. Szakacs, M. Kovacs, M. Crihan, and A. Bernad, “K-Ar datings of Neogene-Quaternary calc-alkaline volcanic rocks in Romania,” Acta Vulkanol. 7, 53–61 (1995).Google Scholar
  4. 4.
    D. H. M. Alderton and A. E. Fallick, “The nature and genesis of gold-silver-tellurium mineralization in the Metaliferi Mountains of western Romania,” Econ. Geol. 95, 495–515 (2000).Google Scholar
  5. 5.
    E. Marcoux, L. Grancea, M. Lupulescu, and J. P. Milesi, “Lead isotope composition of epithermal and porphyry type ore deposits from the Romanian Carpathian Mountains,” Miner. Deposita 37, 173–184 (2002).CrossRefGoogle Scholar
  6. 6.
    E. Rosu, G. Udubasa, Z. Pecskay, C. Panaiotu, C. E. Panaiotu, “Timing of Miocene-Quaternary magmatism and metallogeny in the South Apuseni Mountains, Romania,” Ed. by E. Rosu, in Gold in the Metaliferi mountains, Roman. J. Mineral. Deposits Sp. Iss. 81, 33–38 (2004).Google Scholar
  7. 7.
    I. Seghedi, H. Downes, A. Szakacs, P. R. D., M. F. Thirlwall, E. Rosu, Z. Pecskay, E. Marton, and C. Panaiotu “Neogene-Quaternary magmatism and geodynamics in the Carpathian-Pannonian region: a synthesis,” Lithos 72, 117–146 (2004).CrossRefGoogle Scholar
  8. 8.
    S. Wallier, R. Rey, K. Kouzmanov, T. Pettke, C. A. Heinrich, S. Leary, G. O’ Connor, C. G. Tamas, T. Venneman, and T. Ullrich, “Magmatic fluids in the breccia-hosted epithermal Au-Ag deposit of Rosia Montana, Romania,” Econ. Geol. 101, 923–954 (2006).CrossRefGoogle Scholar
  9. 9.
    M. T. Einaudi, J. W. Hedenquist, and E. E. Inan, “Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments,” Soc. Econ. Geol. Sp. Publ. 10, 285–313 (2003).Google Scholar
  10. 10.
    R. H. Sillitoe and J. W. Hedenquist, “Linkages between volcanotectonic settings, ore-fluid composition, and epithermal precious metal deposits,” Soc. Econ. Geol. Sp. Publ. 10, 315–343 (2003).Google Scholar
  11. 11.
    N. J. Cook, C. L. Ciobanu, G. Damian, and F. Damian, “Tellurides and sulphosalts from deposits in the Golden Quadrilateral,” in Au-Ag-telluride deposits of the Golden Quadrilaterial, Apuseni Mts., Romania, Ed. by N. J. Cook and C. L. Ciobanu, IGCP Int. Field Workshop Project 486 Alba Iulia, Romania, 2004, International Association for the Geology of Ore Deposits Guidebook Series 12, 111–144 (2004).Google Scholar
  12. 12.
    K. Kouzmanov, A. von Quadt, I. Peytcheva, C. Harris, C. A. Heinrich, E. Rosu, G. O’Connor, and G. Rosia, “Poieni porphyry Cu-Au and Rošia Montanǧ epithermal Au-Ag deposits, Apuseni Mts, Romania: timing of magmatism and related mineralization,” Ed. by N. J. Cook and I. K. Bonev, in Au-Ag-Te-Se deposits: Proceedings of IGCP 486 Field Workshop, Kiten, Bulgaria, 2005, (Sofia, 2005), Geochemistry, Mineralogy and Petrology 43, 113–117 (2005).Google Scholar
  13. 13.
    I. Pintea, “New microthermometric data on fluid inclusions from Rosia Montana quartz crystals,” Analele Universitatii Bucuresti, Ser Geol. 48, 74–75 (1999).Google Scholar
  14. 14.
    V. B. Naumov, V. Yu. Prokof’ev, V. A. Kovalenker, M. L. Tolstykh, G. Damian, and F. Damian, “Unusual acid melts in the area of unique Rosia Montanǧ gold deposits, Romania,” in Proceedings of Conference on Granites and Ore Formation, Moscow, Russia, 2011 (IGEM RAN, Moscow, 2011), pp. 91–92 [in Russian].Google Scholar
  15. 15.
    V. B. Naumov, V. Yu. Prokofiev, V. A. Kovalenker, M. L. Tolstykh, G. Damian, and F. Damian, “Unusual acid melts at unique epithermal Rosia Montana (Romania) gold deposit,” in European Current Research on Fluid Inclusions (ECROFI-XXI) Montanuniversitat Leoben, Austria, 2011 (Montanuniversitat Leoben, 2011), pp. 148–149.Google Scholar
  16. 16.
    S. Leary, G. O’ Connor, A. Minut, C. Tamas, S. Manske, and K. Howie, “The Rosia Montana ore deposit,” in Au-Ag-Telluride Deposits of the Golden Quadrilateral, Apuseni Mountains, Romania: Guidebook of the International Field Workshop of the IGCP Project 486, Ed. by N. J. Cook and C. L. Ciobanu, IAGOD Guidebook Ser. 12 89–98 (2004).Google Scholar
  17. 17.
    G. V. Connor, A. Minut, and S. F. Leary, “The geology and exploration of the Rosia Montana Gold Deposit, Transylvania, Romania,” in Mineral Exploration and Sustainable Development, Ed. by D. G. Eliopoulos et al., (Millpress, Rotterdam, 2003), Vol. 2, pp. 1213–1216.Google Scholar
  18. 18.
    C. G. Tamas, L. Bailly, and B. Cauuet, “Breccia structures and Au-Ag mineral assemblages in the Rosia Montana ore deposit, Apuseni mountains, Romania,” in Au-Ag-Telluride Deposits of the Golden Quadrilaterial, Apuseni Mts., Romania: IGCP International Field Workshop Project, 486, Alba Iulia, Romania, 2004, (Alba Iulia, 2004), Ed. by N. J. Cook and C. L. Ciobanu, Int. Ass. Geol. Ore Dep. Guidebook Ser. 12, 254–255 (2004).Google Scholar
  19. 19.
    V. B. Naumov, “Thermometric study of melt inclusions in quartz phenocrysts from quartz porphyry,” Geokhimiya, No. 4, 494–498 (1969).Google Scholar
  20. 20.
    A. V. Sobolev, “Melt inclusions in minerals as a source of principle petrological information,” Petrology 4(3), 265–276 (1996).Google Scholar
  21. 21.
    A. A. Nosova, L. V. Sazonova, V. V. Narkisova, and S. G. Simakin, “Minor elements in clinopyroxene from Paleozoic volcanics of the Tagil island arc in the Central Urals,” Geochem. Int. 40(3), 219–232 (2002).Google Scholar
  22. 22.
    M. V. Portnyagin, S. G. Simakin, and A. V. Sobolev, “Fluorine in primitive magmas of the Troodos Ophiolite Complex, Cyprus: analytical methods and main results,” Geochem. Int. 40(7), 691–699 (2002).Google Scholar
  23. 23.
    V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, “Average compositions of igneous melts from main geodynamic settings according to the investigation of melt inclusions in minerals and quenched glasses of rocks,” Geochem. Int. 48(12), 1266–1288 (2010).CrossRefGoogle Scholar
  24. 24.
    V. B. Naumov, I. P. Solovova, V. I. Kovalenko, and A. V. Guzhova, “Conditions of crystallization and compositional specifics of phases of melt inclusions in the anorthoclase of agpaitic trachytes of Pantelleria Island, Italy,” Geokhimiya, No. 2, 207–215 (1989).Google Scholar
  25. 25.
    G. A. Mahood and J. A. Stimac, “Trace-element partitioning in pantellerites and trachytes,” Geochim. Cosmochim. Acta 54, 2257–2276 (1990).CrossRefGoogle Scholar
  26. 26.
    V. I. Kovalenko, V. B. Naumov, I. P. Solovova, A. V. Girnis, R. L. Hervig, and A. Boriani, “Volatile components, compositions and conditions of crystallization of magmas of the basalt-pantellerite association of Pantelleria Island: melt and fluid inclusion data,” Petrologiya 2(1), 24–42 (1994).Google Scholar
  27. 27.
    P. Ferla and C. Meli, “Evidence of magma mixing in the “Daly Gap” of alkaline suites: a case study from the enclaves of Pantelleria (Italy),” J. Petrol. 47, 1467–1507 (2006).CrossRefGoogle Scholar
  28. 28.
    A. R. Philpotts, “Liquid immiscibility in silicate melt inclusions in plagioclase phenocrysts,” Bull. Mineral. 104, 317–324 (1981).Google Scholar
  29. 29.
    W. G. Melson, “Monitoring the 1980–1982 eruptions of Mount St. Helens: compositions and abundances of glass,” Science 221(4618), 1387–1391 (1983).CrossRefGoogle Scholar
  30. 30.
    I. N. Bindeman and F. Yu. Dubik, “High-temperature residual melt as result of fluid-magmatic differentiation as exemplified by extrusive dacites of Mendeleev volcano,” Dokl. Akad. Nauk SSSR 312(3), 702–706 (1990).Google Scholar
  31. 31.
    T. Watanaba, T. Hirama, M. Yuasa, S. Terada, and K. Fujioka, “Glass inclusions with microglobules in plagioclase and pyroxene phenocrysts of volcanic rocks from the Bonin Arc, Leg 126,” Proc. Ocean Drill. Progr., Sci. Res. 126, 171–183 (1992).Google Scholar
  32. 32.
    Y. Vapnik, “Melt inclusions in a dike of peralkaline thyolite (Nahal Shlomo area, southern Israel),” Neues Jb. Miner. Monat. 8, 365–376 (1996).Google Scholar
  33. 33.
    C. P. Wood and P. R. L. Browne, “Chlorine-rich pyrometamorphic magma at White Island Volcano, New Zealand,” J. Volcanol. Geotherm. Res. 72, 21–35 (1996).CrossRefGoogle Scholar
  34. 34.
    V. V. Sharygin, L. I. Panina, and N. V. Vladykin, “Melt inclusions in lamproite minerals of Smoky Butte (Montana, USA),” Geol. Geofiz. 39(1), 38–54 (1998).Google Scholar
  35. 35.
    R. Wirth and A. Rocholl, “Nanocrystalline diamond from the Earth’s mantle underneath Hawaii,” Earth Planet. Sci. Lett. 211, 357–369 (2003).CrossRefGoogle Scholar
  36. 36.
    M. L. Frezzotti, A. Peccerillo, V. Zanon, and I. Nikogosian, “Silica-rich melts in quartz xenoliths from Vulcano Island and their bearing on processes of crustal anatexis and crust-magma interaction beneath the Aeolian Arc, Southern Italy,” J. Petrol. 45(1), 3–26 (2004).CrossRefGoogle Scholar
  37. 37.
    J. K. Jakobsen, I. V. Veksler, C. Tegner, and C. K. Brooks, “Immiscible ironand silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion,” Geology 33(11), 885–888 (2005).CrossRefGoogle Scholar
  38. 38.
    Z. D. Atlas, J. E. Dixon, G. Sen, M. Finny, A. L. Martin-Del Pozzo, “Melt inclusions from Volcan Popocatepetl and Volcan De Colima, Mexico: melt evolution due to vapor-saturated crystallization during ascent,” J. Volcanol. Geotherm. Res 153, 221–240 (2006).CrossRefGoogle Scholar
  39. 39.
    M. C. S. Humphreys, M. Edmonds, T. Christopher, and V. Hards, “Magma hybridisation and diffusive exchange recorded in heterogeneous glasses from Soufriere Hills Volcano, Montserrat,” Geophys. Res. Lett. 37 (2010).Google Scholar
  40. 40.
    S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. London, Sp. Publ. 42, 313–345 (1989).Google Scholar
  41. 41.
    R. D. Congdon and W. P. Nash, “Eruptive pegmatite magma: rhyolite of the Honeycomb Hills, Utah,” Am. Mineral. 76, 1261–1278 (1991).Google Scholar
  42. 42.
    J. D. Webster and W. A. Duffield, “Volatiles and lithophile elements in Taylor Creek Rhyolite: constraints from glass inclusion analysis,” Am. Mineral. 76, 1628–1645 (1991).Google Scholar
  43. 43.
    J. D. Webster, D. M. Burt, and R. A. Aguillon, “Volatile and lithophile trace-element geochemistry of Mexican tin rhyolite magmas deduced from melt inclusions,” Geochim. Cosmochim. Acta 60, 3267–3283 (1996).CrossRefGoogle Scholar
  44. 44.
    J. D. Webster, R. Thomas, D. Rhede, H.-J. Forster, R. Seltmann, “Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorusrich residual liquids,” Geochim. Cosmochim. Acta 61, 2589–2604 (1997).CrossRefGoogle Scholar
  45. 45.
    A. Audetat, D. Gunther, and C. A. Heinrich, “Magmatic-hydrothermal evolution in a fractionating granite: a microchemical study of the Sn-W-F-mineralized Mole Granite (Australia),” Geochim. Cosmochim. Acta 64, 3373–3393 (2000).CrossRefGoogle Scholar
  46. 46.
    A. K. Schmitt, S. I. de Silva, R. B. Trumbull, and R. Emmermann, “Magma evolution in the Purico ignimbrite complex, northern Chile: evidence for zoning of a dacitic magma by injection of rhyolitic melts following mafic recharge,” Contrib. Mineral. Petrol. 140, 680–700 (2001).CrossRefGoogle Scholar
  47. 47.
    V. A. Kuznetsov, I. A. Andreeva, V. I. Kovalenko, V. S. Antipin, N. N. Kononkova, “Abundance of water and trace elements in the ongonite melt of the Ary-Bulak Massif, eastern Transbaikal region: evidence from study of melt inclusions,” Dokl. Earth Sci. 396(4), 571–576 (2004).Google Scholar
  48. 48.
    I. S. Peretyazhko, E. A. Tsareva, and V. E. Zagorskii, “Immiscibility of calcium fluoride and aluminosilicate melts in ongonite from the Ary-Bulak intrusion, eastern Transbaikal region,” Dokl. Earth Sci. 413(2), 315–320 (2007).CrossRefGoogle Scholar
  49. 49.
    Z. Zajacz, W. E. Halter, T. Pettke, and M. Guillong, “Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning,” Geochim. Cosmochim. Acta 72, 2169–2197 (2008).CrossRefGoogle Scholar
  50. 50.
    E. V. Badanina, L. F. Syritso, E. V. Volkova, R. Tomas, and R. B. Tramboll, “Composition of Li-F granite melt and its evolution during the formation of the ore-bearing Orlovka Massif in Eastern Transbaikalia,” Petrology 18(2), 131–157 (2010).CrossRefGoogle Scholar
  51. 51.
    A. Y. Borisova, R. Thomas, S. Salvi, F. Candaudap, A. Lanzanova, J. Chmeleff, “Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite-leucogranite melt and fluid inclusions: new evidence for melt-melt-fluid immiscibility,” Mineral. Mag. 76, 91–113 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. B. Naumov
    • 1
  • V. A. Kovalenker
    • 2
  • V. Yu. Prokofiev
    • 2
  • M. L. Tolstykh
    • 1
  • G. Damian
    • 3
  • F. Damian
    • 3
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM)Russian Academy of SciencesMoscowRussia
  3. 3.Universitatea de Nord Baia MareBaia MareRomania

Personalised recommendations