Skip to main content
Log in

Masses of carbon in the Earth’s hydrosphere

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Recent data were summarized on the concentration and mass of inorganic and organic carbon in reservoirs of the Earth’s hydrosphere. We compared carbon masses and accumulation conditions in the surface hydrosphere and waters of the sedimentary shell and proportions between carbonate, dissolved, and suspended particulate organic carbon. It was shown that the total masses of carbon in the surface hydrosphere and in the waters of the sedimentary shell are approximately equal to 80 × 1018 g C at an organic to carbonate carbon ratio of 1 : 36 and 1 : 43, respectively. Three main forms of organic compounds in the ocean (living organisms, suspended particles, and dissolved species) occur in the proportion 1 : 13 : 250 and form the pyramid of masses 4 × 1015 g, 50 × 1015 g, and 1000 × 1015 g Corg. The descending sequence of the organic to carbonate carbon ratio in water, ocean (1 : 36) > glaciers (1 : 8) > lakes (1 : 2) > rivers (1 : 0.6) > wetlands (1 : 0.3), is in general consistent with an increase in the same direction in the mean concentrations of organic matter: 0.77 mg Corg/L in the ocean, 0.7 mg Corg/L in glaciers, 6–30 mg Corg/L in lakes, 15 mg Corg/L in rivers, and 75 mg Corg/L in wetlands. Both the mean concentrations and masses of dissolved organic matter in the pore waters of oceanic sediments and in the waters of the sedimentary shell are similar: 36–37 mg/L and 5 × 1018 and 5.6 × 1018 g, respectively. The mass of carbonate carbon in the pore waters of the ocean, (19–33) × 1018 g, is comparable with its mass in the water column, 38.1 × 1018 g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. Klige, “Hydrosphere,” in Great Russian Enncyclopedia, Vol. 7 (2007), pp. 100–10

    Google Scholar 

  2. V. N. Mikhailov, A. D. Dobrovol’skii, and S. A. Dobrolyubov, Hydrology (Vysshaya shkola, Moscow, 2007) [in Russian].

    Google Scholar 

  3. V. P. Zverev, Water in the Earth (Nauchnyi mir, Moscow, 2009) [in Russian].

    Google Scholar 

  4. R. K. Klige, History of Hydrosphere (Nauchnyi mir, Moscow, 1998) [in Russian].

    Google Scholar 

  5. V. M. Kotlyakov and D. M. Parkin, “Ice,” in Great Russian Enncyclopedia, Vol. 17 (2010), pp. 151–152.

    Google Scholar 

  6. V. P. Zverev, Groundwaters of the Earth’s Crust and Geological Processes (Nauchnyi mir, Moscow, 2006) [in Russian].

    Google Scholar 

  7. I. A. Shiklomanov, “World Fresh Water Resources,” in Water in Crisis: A Guide to the World’s Fresh Water Resources, Ed. by P. H. Gleick (Oxford University, 1993), pp. 13–24.

    Google Scholar 

  8. I. A. Shiklomanov, World Water Resources at the Beginning of the 21st Century (St. Petersburg, 1999).

    Google Scholar 

  9. R. Horne, Marine Chemistry (Wiley, New York, 1969).

    Google Scholar 

  10. O. A. Alekin, and Yu. I. Lyakhin, Marine Chemistry (Gidrometeoizdat, Leningrad, 1984).

    Google Scholar 

  11. A. M. Nikanorov, Hydrochemistry (St. Petersburg, 2001) [in Russian].

    Google Scholar 

  12. Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier-Pergamon, Oxford, 2003).

    Google Scholar 

  13. S. R. Emerson and J. Hedges, Chemical Oceanography and the Marine Carbon Cycle (University Press, Cambridge, 2008).

    Book  Google Scholar 

  14. V. V. Gordeev, Geochemistry of the River-Sea System (Matushkin I.I., Moscow, 2012) [in Russian].

    Google Scholar 

  15. V. A. Uspenskii, Introduction to Oil Geochemistry (Nedra, Leningrad, 1970) [in Russian].

    Google Scholar 

  16. V. M. Shvets, Organic Matter of Groundwaters (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  17. E. A. Romankevich and A. A. Vetrov, “Fluxes and Masses of Organic Carbon in the Ocean,” Geochem. Int. 35(9), 829–836 (1997).

    Google Scholar 

  18. E. T. Degens, S. Kempe, and J. E. Richey, “Summary: Biogeochemistry of Major World Rivers,” in Biogeochemistry of Major World Rivers, Ed. by E. T. Degens. S. Kempe, and J. E. Richey (SCOPE 42, Wiley, Chichester, 1991), pp. 323–347.

    Google Scholar 

  19. Yu. N. Gursky, Geochemistry of the Lithosphere of Internal Seas (GEOS, Moscow, 2007), Vol. 2 [in Russian].

    Google Scholar 

  20. T. R. Carrick and D. W. Sutcliffe, Concentrations of Major Ions in Lakes and Tarns on the English Lake District (1953–1978) (Freshwater Biological Association, Ambleside, 1982) (FBA Occasional Publications 16). http://aquaticcommons.org/5354/

    Google Scholar 

  21. P. Miretzky, V. Conzonno, and A. F. Cirelli, “Hydrochemistry of Pampasic Ponds in the Lower Stream Bed of Salado River Drainage Basin, Argentina,” Environ. Geol. 39(8), 951–956 (2000).

    Article  Google Scholar 

  22. B. F. Jones and D. M. Deocampo, “Geochemistry of Saline Lakes,” in Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier-Pergamon, Oxford, 2003), Vol. 5, pp. 207–223.

    Google Scholar 

  23. A. M. Chernyaev, L. E. Chernyaeva, and M. E. Eremeeva, Swamp Hydrochemistry (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  24. M. Meybeck, “Global Occurrence of Major Elements in Rivers,” in Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier-Pergamon, Oxford, 2003), Vol. 5, pp. 207–223.

    Chapter  Google Scholar 

  25. Y. K. Kharaka and J.S. Hanor, “Deep Fluids in the Continents: I. Sedimentary Basins,” in Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier-Pergamon, Oxford, 2003), Vol. 5, pp. 499–540.

    Google Scholar 

  26. L. N. Plummer, D. L. Parkhurst, and D. C. Thorstenson, “Development of Reaction Models for Ground-water Systems,” Geochim. Cosmochim. Acta 4, 665–686 (1983).

    Article  Google Scholar 

  27. G. H. Brown, “Glacier Meltwater Hydrochemistry,” Appl. Geochem. 17, 855–883 (2002).

    Article  Google Scholar 

  28. P. F. Svistov, N. A. Pershina, A. I. Polishchuk, and M. T. Pavlova, “Ionic Composition of Precipitate,” in Review of Environmental State and Pollution in the Russian Federation, Ed. by Yu. A. Izrael’ et al. (Rosgidromet, Moscow, 2010), pp. 47–50 [in Russian].

    Google Scholar 

  29. V. A. Kovda and B. G. Rozanov, Pedology. Soil and Its Formation (Vysshaya shkola, Moscow, 1988), Vol. 1 [in Russian].

    Google Scholar 

  30. E. A. Romankevich, A. A. Vetrov, and V. I. Peresypkin, “Carbon Cycle in the Modern Ocean and Important Problems of Biogeochemistry,” in Oceanology at the Start of the 21st Century, Ed. by A. L. Vereshchaka (Nauka, Moscow, 2008), pp. 78–107 [in Russian].

    Google Scholar 

  31. A. C. Redfield, B. H. Ketchum, and F. A. Richards, “The Influence of Organisms on the Composition of Sea Water,” in The Sea, Ed. by M. N. Hill (Willey, New York, 1963), Vol. 2, pp. 26–77.

    Google Scholar 

  32. A. Kortzinger, W. Koeve, P. Kahler, and L. Mintrop, “C: N Ratios in the Mixed Layer during the Productive Season in the Northeast Atlantic Ocean,” Deep Sea Res. I 48, 661–688 (2001).

    Article  Google Scholar 

  33. I. I. Volkov and A. G. Rozanov, “Tendencies in the Formation of the Chemical Composition of Waters of Hydrosulfuric Basins,” in Oceanology at the Start of the 21st Century, Ed. by A. L. Vereshchaka (Nauka, Moscow, 2008), pp. 59–77 [in Russian].

    Google Scholar 

  34. P. N. Makkaveev, “Variability of Carbonate Equilibrium in Waters of the World Ocean on Diverse Temporal and Spatial Scales,” in Oceanology at the Start of the 21st Century, Ed. by A. L. Vereshchaka (Nauka, Moscow, 2008), pp. 109–156 [in Russian].

    Google Scholar 

  35. M. E. Vinogradov, “Evolution of Pelagic Communities and Biotic Balance of the Ocean,” in Oceanology at the Start of the 21st Century, Ed. by A. L. Vereshchaka (Nauka, Moscow, 2008), pp. 257–292 [in Russian].

    Google Scholar 

  36. Problems of Life Origin, Ed. by A. Yu. Rozanov (PIN RAN, Moscow, 2009) [in Russian].

    Google Scholar 

  37. E. A. Romankevich, Geochemistry of Organic Matter in the Ocean (Springer, Berlin, 1984).

    Book  Google Scholar 

  38. A. P. Lisitsyn, “Marginal Filters and Biofilters of the World Ocean,” in Oceanology at the Start of 21st Century, Ed. by A. L. Vereshchaka (Nauka, Moscow, 2008), pp. 159–224 [in Russian].

    Google Scholar 

  39. E. A. Romankevich, A. A. Vetrov, and V. I. Peresypkin, “Organic Matter of the World Ocean,” Russ. Geol. Geophys. 50(4), 299–307 (2009).

    Article  Google Scholar 

  40. V. S. Savenko, “CO2 Exchange between the Ocean and Atmosphere in the Past and Present,” Geochem. Int. 38(3), 313–316 (2000).

    Google Scholar 

  41. J. D. Milliman and A. W. Droxler, “Calcium Carbonate Sedimentation in the Global Ocean: Linkages between the Neritic and Pelagic Environments,” Oceanography 8(3), 92–94 (1995).

    Article  Google Scholar 

  42. J. D. Milliman, P. J. Troy, W. M. Balch, A. K. Adams, Y.-H. Li, and F. T. Mackenzie, “Biologically Mediated Dissolution of Calcium Carbonate above the Chemical Lysocline?,” Deep-Sea Res. I 46, 1653–669 (1999).

    Article  Google Scholar 

  43. A. P. Lisitsyn, Oceanic Sedimentation (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  44. A. V. Borges, B. Delille, and M. Frankignoulle, “Budgeting Sinks and Sources of CO2 in the Coastal Ocean: Diversity of Ecosystems Counts,” Geophys. Res. Lett. 32, L14601 (2005). doi:10.1029/2005GL023053.

    Article  Google Scholar 

  45. V. S. Savenko, “Is Ocean a Source of Carbon Dioxide in the Atmosphere?,” Geokhimiya, No. 11, 1634–1642 (1995).

    Google Scholar 

  46. V. S. Savenko, “Transformation of Silicates during Lithogenesis as a Factor Controlling CO2 Content in the Atmosphere,” Vestn. Mosk. Univ., Ser. 5. Geograf., No. 5, 5–11 (2005).

    Google Scholar 

  47. V. S. Savenko, “Indirect Uptake of Atmospheric CO2 by the Ocean,” Dokl. Earth Sci. 438(2), 873–875 (2011).

    Article  Google Scholar 

  48. V. S. Savenko, “A Possible Geochemical Mechanism of the Conjugation of the Carbon and Calcium Cycles in the Ocean,” Oceanology 52(2), 191–193 (2012).

    Article  Google Scholar 

  49. Y. F. Makogon, S. A. Holditch, and T. Y. Makogon, “Natural Gas-Hydrates—A Potential Energy Source for the 21st Century,” Petroleum Sci. Engineer. 56, 14–31 (2007).

    Article  Google Scholar 

  50. E. A. Anfilatova, “Analytical Review of Modern Foreign Data on Distribution of Gas Hydrates in the World Basins,” Neftegz. Geol. Teor. Praktika, 3(4), 1–8 (2000). http://www.ngtp.ru

    Google Scholar 

  51. A. N. Dmitrievskii and I. E. Balanyuk, Gas-Hydrates of Seas and Oceans as a Source of Future Hydrocarbons (OOO IRTs Gazprom, Moscow, 2009) [in Russian].

    Google Scholar 

  52. D. Long, M. A. Lovell, J. G. Rees, and C. A. Rochelle, “Sediment-Hosted Gas Hydrates: New Insights on Natural and Synthetic Systems,” Geol. Soc. London, Sp. Publ. 319, 1–9 (2009).

    Article  Google Scholar 

  53. K. L. Denman, G. Brasseur, A. Chidthaisong, P. Ciais, P. M. Cox, R. E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S. Ramachandran, P. L. Dias, S. C. Wofsy Silva, and X. Zhang, “Couplings between Changes in the Climate System and Biogeochemistry,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Cambridge University, Cambridge, 2007).

    Google Scholar 

  54. A. Yu. Lein and M. V. Ivanov, Biogeochemical Cycle of Methane in the Ocean (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  55. V. E. Artem’ev, Geochemistry of Organic Matter in the River-Sea System (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  56. O. A. Bessonov, Geochemical History of Carbon in the Biosphere: Emergence, Formation, and Evolution of the Life Sphere (MP Kniga, Rostov na Donu, 1996) [in Russian].

    Google Scholar 

  57. T. J. Battin, L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater, “Biophysical Controls on Organic Carbon Fluxes in Fluvial Networks,” Nature Geoscience 1, 95–100 (2008).

    Article  Google Scholar 

  58. V. S. Savenko, Chemical Composition of the Suspended Matter of the World’s Ocean (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  59. M. Meybeck and A. Ragu, River Discharges to the Oceans: an Assessment of Suspended Solids, Major Ions and Nutrients (UNEP/WHO, 1995).

    Google Scholar 

  60. R. K. Klige and V. N. Malinin, “World Ocean Level Oscillations as Integral Indicator of Redistribution of the Hydrosphere Waters,” in Proceedings of 6th All-Russian Hydrographic Conference. Section 3 (Gidrometeoizdat, St. Petersburg, 2004), pp. 14–16 [in Russian].

    Google Scholar 

  61. A. V. Mal’tseva, M. N. Tarasov, and M. P. Smirnov, “Organic Runoff from the USSR Territory,” Gidrokhim. Mater. 102 (1987).

  62. M. Meybeck, “C, N, P, and S in Rivers: From Sources to Global Inputs,” in Interaction of C, N, P and S. Biogeochemical Cycles and Global Change, Ed. by R. Wollast, R. T. Mackenzie, and L. Chou (Springer, Berlin-Heidelberg, 1993), Vol. 14, pp. 163.

    Chapter  Google Scholar 

  63. V. E. Artemyev, Geochemistry of Organic Matter in River-Sea System (Kluwer Acad. Publishers, Dordrecht, 1996).

    Book  Google Scholar 

  64. Proceedings of All-Russian Hydrological Conference (Gidrometeoizdat, St. Petersburg, 2004) [in Russian].

  65. A. I. Bedritskii, R. S. Khalitov, I. A. Shiklomanov, and I. S. Zektser, “Aqueous Resources of Russia and Their Use in New Social and Economic Conditions with Allowance for Possible Climatic Changes,” in Proceedings of 6th All-Russian Hydrological Conference (Gidrometeoizdat, St. Petersburg, 2004), pp. 3–10 [in Russian].

    Google Scholar 

  66. P. A. Kaplin and A. O. Selivanov, Fluctuations of the Russian Sea Levels and Coastal Evolution: Past Present, and Future (GEOS, Moscow, 1999) [in Russian].

    Google Scholar 

  67. B. Schlunz and R. R. Schneider, “Transport of Terrestrial Organic Carbon to the Oceans by Rivers: Re-Estimating Fluxand Burial Rates,” J. Earth Sciences 88, 599–606 (2000).

    Article  Google Scholar 

  68. V. Ittekkot, “Global Trends in the Nature of Organic Matter in River au]Suspensions,” Nature 332, 436–438 (1988).

    Article  Google Scholar 

  69. J. I. Hedges and R. G. Keil, “Sedimentary Organic Matter Preservation: An Assessment and Speculative Synthesis,” Mar. Chem. 49, 81–115 (1995).

    Article  Google Scholar 

  70. J. I. Hedges, R. G. Keil, and R. Benner, “What Happens to Terrestrial Organic Matter in the Ocean?,” Org. Geochem. 27, 195–212 (1997).

    Article  Google Scholar 

  71. T. Dittmar and G. Kattner, “The Biogeochemistry of the River and Shelf au]Ecosystem of the Arctic Ocean: A Review,” Mar. Chem. 83, 103–120 (2003).

    Article  Google Scholar 

  72. R. Stein and R. W. Macdonald, “Organic Carbon Budget: Arctic Ocean vs. Global Ocean,” in The Organic Carbon Cycle in the Arctic Ocean, Ed. by R. Stein and R. W. Macdonald (Springer, Berlin, 2004), pp. 315–322.

    Chapter  Google Scholar 

  73. A. A. Vetrov and E. A. Romankevich, Carbon Cycle in the Russian Arctic Seas (Springer, Berlin, 2004).

    Book  Google Scholar 

  74. G. Cauwet and I. S. Sidorov, “The Biogeochemistry of Lena River: Organic Carbon and Nutrients Distribution,” Mar. Chem. 53, 211–227 (1996).

    Article  Google Scholar 

  75. J. M. Lobbes, H. P. Fitznar, and G. Kattner, “Biogeochemical Characteristics of Dissolved and Particulate Organic Matter in Russian Rivers Entering the Arctic Ocean,” Geochim. Cosmochim. Acta 64, 2973–2983 (2000).

    Article  Google Scholar 

  76. H. Köller, B. Meon, V. V. Gordeev, A. Spitzy, and R. M. W. Amon, “Dissolved Organic Matter (DOM) in the Rivers Ob and Yenisei and the Adjacent Kara Sea,” in Siberian River Run-Off in the Kara Sea: Characterisation, Quantification, Variability, and Environmental Significance. Proceedings in Marine Sciences, Ed. by R. Stein, K. Fahl, D. K. F@utterer, E. M. Galimov, and O. V. Stepanets (Elsevier, Amsterdam, 2003), pp. 281–308.

    Google Scholar 

  77. V. Rachold, H. Eicken, V. V. Gordeev, M. N. Grigoriev, H.-W. Hubberten, A. P. Lisitzin, V. P. Shevchenko, and L. Schirmeister, “Modern Terrigenous Organic Carbon Input to the Arctic Ocean,” in The Organic Carbon Cycle in the Arctic Ocean, Ed. by R. Stein and R. W. Macdonald (Springer, Berlin, 2004), pp. 33–55.

    Chapter  Google Scholar 

  78. R. M. W. Amon and R. Benner, “Bacterial Utilization of Different Size Classes of Dissolved Organic Matter,” Limnol. Oceanogr. 41, 41–51 (1996).

    Article  Google Scholar 

  79. S. V. Ryanzhin, “How Many Lakes are on Earth?,” Priroda (Moscow, Russ. Fed.), No. 4, 18–25 (2005).

    Google Scholar 

  80. S. V. Ryanzhin, “New Estimates for Global Surface Area and Volume of Natural World Lakes,” Dokl. Earth Sci. 401(2), 253–257 (2005).

    Google Scholar 

  81. M. Meybeck, “Global Distribution of Lakes,” in Physics and Chemistry of Lakes, Ed. by A. Lerman, D. Imboden, and J. Gat (Berlin-Heidelberg, 1995), pp. 1–36.

    Chapter  Google Scholar 

  82. J. A. Downing, Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack, and J. J. Middelburg, “The Global Abundance and Size Distribution of Lakes, Ponds, and Impoundments,” Limnol. Oceanogr. 51, 2388–2397 (2006).

    Article  Google Scholar 

  83. L. J. Tranvik, J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L. B. Knoll, P. L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. M. Leech, S. L. McCallister, D. M. McKnight, J. M. Melack, E. Overholt, J. A. Porter, Y. Prairie, W. H. Renwick, F. Roland, B. S. Sherman, D. W. Schindler, S. Sobek, A. Tremblay, M. J. Vanni, A. M. Verschoor, E. von Wachenfeldt, and G. A. Weyhenmeyer, “Lakes and Reservoirs as Regulators of Carbon Cycling and Climate,” Limnol. Oceanogr. 54(6) Part 2, 2298–2314 (2009).

    Article  Google Scholar 

  84. V. L. Louis, C. A. Kelly, E. Duchemin, J. W. M. Rudd, and D. M. Rosenberg, “Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate,” BioScience 50, 766–775 (2000).

    Article  Google Scholar 

  85. B. F. Chao, Y. H. Wu, and Y. S. Li, “Impact of Artificial Reservoir Water Impoundment on Global Sea Level,” Science 320, 212–214 (2008).

    Article  Google Scholar 

  86. P. C. Hanson, A. I. Pollard, D. L. Bade, K. Ppredickw, S. R. Carpenter, and J. A. Foley, “A Model of Carbon Evasion and Sedimentation in Temperate Lakes,” Global Change Biology 10, 1285–1298 (2004).

    Article  Google Scholar 

  87. S. Sobek, L. J. Tranvik, Y. T. Prairie, P. Kortelainen, and J. J. Cole, “Patterns and Regulation of Dissolved Organic Carbon: An Analysis of 7,500 Widely Distributed Lakes,” Limnol. Oceanogr. 52, 1208–1219 (2007).

    Article  Google Scholar 

  88. P. C. Hanson, S. R. Carpenter, J. A. Cardille, M. T. Coe, and L. A. Winslow, “Small Lakes Dominate a Random Sample of Regional Lake Characteristics,” Freshwater Biology 52, 814–822 (2007).

    Article  Google Scholar 

  89. T. Yoshioka, Kh. M. G. Mostafa, E. Konohira, E. Tanoue, K. Hayakawa, M. Takahashi, S. Ueda, M. Katsuyama, T. Khodzher, N. Bashenkhaeva, I. Korovyakova, L. Sorokovikova, and L. Gorbunova, “Distribution and Characteristics of Molecular Size Fractions of Freshwater-Dissolved Organic Matter in Watershed Environments: Its Implication to Degradation,” Limnology 8, 29–44 (2007).

    Article  Google Scholar 

  90. L. M. Sorokovikova, V. N. Sinyukovich, T. V. Khodzher, L. P. Golobokova, N. V. Bashenkhaeva, and O. G. Netsvetaeva, “Influx of Biogenic Elements and Organic Matters from Lake Baikal with Riverine Waters and Atmospheric Precipitates,” Meteorol. Gidrol., No. 4, 78–86 (2001).

    Google Scholar 

  91. T. Yoshioka, Sh. Ueda, T. Khodzher, N. Bashenkhaeva, I. Korovyakova, L. Sorokovikova, and L. Gorbunova, “Distribution of Dissolved Organic Carbon in Lake Baikal and Its Watershed,” Limnology 3, 159–168 (2002).

    Article  Google Scholar 

  92. A. P. Ostapenia, A. Parparov, and T. Berman, “Lability of Organic Carbon in Lakes of Different Trophic Status,” Freshwater Biology 54, 1312–1323 (2009).

    Article  Google Scholar 

  93. W. Grane’li, M. J. Lindell, and L. J. Tranvik, “Photooxidative Production of Dissolved Inorganic Carbon in Lakes of Different Humic Content,” Limnol. Oceanogr. 41, 698–706 (1996).

    Article  Google Scholar 

  94. D. Bastviken, J. J. Cole, M. L. Pace, and M. C. van de Bogert, “Fates of Methane from Different Lake Habitats: Connecting Whole-Lake Budgets and CH4 Emissions,” J. Geophys. Res. 113, G02024 (2008). doi:10.1029/2007G000608.

    Article  Google Scholar 

  95. A. D. Duchkov, “Methane Gas-Hydrates in the Sediments of Lake Baikal,” Ros. Khim. Zh. 47(3), 91–100 (2003).

    Google Scholar 

  96. R. Samsonov, D. Lyugai, E. Perlova, V. Kvon, S. Leonov, N. Makhonina, and O. Khlystov, “History of Studies of Lake Baikal Gas Hydrates,” Neft’ Gaz. Evraziya, No. 11 (2009); No. 1 (2010).

    Google Scholar 

  97. J. A. Leenheer, T. I. Noyes, C. E. Rostad, and M. L. Davisson, “Characterization and Origin of Polar Dissolved Organic Matter from the Great Salt Lake,” Biogeochemistry 69, 125–141 (2004).

    Article  Google Scholar 

  98. P. J. Curtis and H. E. Adams, “Dissolved Organic Matter Quantity and Quality from Freshwater and Saltwater Lakes in East-Central Alberta,” Biogeochemistry 30, 59–76 (1995).

    Article  Google Scholar 

  99. N. V. Aladin, A. A. Filippov, I. S. Plotnikov, M. I. Orlova, and W. D. Williams, “Changes in the Structure and Function of Biological Communities in the Aral Sea, with Particular Reference to the Northern Part (Small Aral Sea), 1985–1994: A Review,” Int. J. Salt Lake Res. 7, 301–343 (1998).

    Google Scholar 

  100. T. R. Whittier, D. P. Larsen, S. A. Peterson, and T. M. Kincaid, “A Comparison of Impoundments and Natural Drainage Lakes in the Northeast USA,” Hydrobiologia 470, 157–171 (2002).

    Article  Google Scholar 

  101. S. Sobek, L. J. Tranvik, and J. J. Cole, “Temperature Independence of Carbon Dioxide Supersaturation in Global Lakes,” Glob. Biogeochem. Cycles 19, GB2003 (2005).

    Article  Google Scholar 

  102. C. M. Duarte, Y. T. Prairie, C. Montes, J. J. Cole, R. Striegl, J. Melack, and J. A. Downing, “CO2 Emissions from Saline Lakes: A Global Estimate of a Surprisingly Large Flux,” J. Geophys. Res. 113 (2008). doi: 10.129/2007G000637.

  103. J. J. Cole, Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg, and J. Melack, “Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget,” Ecosystems 10, 171–184 (2007).

    Article  Google Scholar 

  104. D. D. Bastviken, J. J. Cole, M. Pace, and L. Tranvik, “Methane Emissions from Lakes: Dependence of Lake Characteristics, Two Regional Assessments, and a Global Estimate,” Glob. Biogeochem. Cycles 18, GB4009 (2004). doi: 10.1029/2004GB002238.

    Article  Google Scholar 

  105. S. E. Vomperskii, “Biospheric Significance of Swamps in the Carbon Cycle,” Priroda (Moscow, Russ. Fed.), No. 7, 44–50 (1994).

    Google Scholar 

  106. P. H. Gleick, “Water Resources,” in Encyclopedia of Climate and Weather, Ed. by S. H. Schneider (Oxford Univ., New York, 1996), Vol. 2, pp. 817–823.

    Google Scholar 

  107. Assessment on Peatlands, Biodiversity and Climate Change, Ed. by F. Parish, A. Sirin, D. Charman, et al., (Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen, 2008).

    Google Scholar 

  108. E. I. Valeeva and D. V. Moskovichenko, Role of Water-Swamp Areas in Sustainable Development of Northern West Siberia (IPOS SO RAN, Tyumen, 2001).

    Google Scholar 

  109. J. K. Adamson, W. A. Scott, A. P. Rowland, and G. R. Beard, “Ionic Concentration in a Blanket Peat Bog in Northern England and Correlation with Deposition and Climate Variables,” Eur. J. Soil Sci. 52, 69–79 (2001).

    Article  Google Scholar 

  110. C. Blodau, “Carbon Cycling in Peatlands—A Review of Processes and Controls,” Environ. Rev. 10, 111–134 (2002).

    Article  Google Scholar 

  111. C. M. Yule and L. N. Gomez, “Leaf Litter Decomposition in a Tropical Peat Swamp Forest in Peninsular Malaysia,” Wetlands Ecology and Management 17, 231–241 (2009).

    Article  Google Scholar 

  112. E. A. Golovatskaya and E. E. Veretennikova, “Carbon in Swamp Waters,” in Peatlands of West Siberia and Carbon Cycle: Past and Present. Proceedings of 2nd International Field Symposium, Khanty Mansiisk, Russia, 2007, Ed. by S. E. Vomperskii (Nauchn-Tekhn. Lit., Tomsk, 2007), p. 90 [in Russian].

    Google Scholar 

  113. E. S. Ivanova and Yu. A. Kharanzhevskaya, “Determination of Organic Matter Content in Swamp Waters of a High Bog,” in Peatlands of West Siberia and Carbon Cycle: Past and Present. Proceedings of 2nd International Field Symposium, Khanty Mansiisk, Russia, 2007, Ed. by S. E. Vomperskii (Nauchn-Tekhn. Lit., Tomsk, 2007), pp. 98–99 [in Russian].

    Google Scholar 

  114. E. S. Voistinova, “Chemical Study of Swamp Waters in the Framework of Ecological Monitoring of Swampy Lands,” in Peatlands of West Siberia and Carbon Cycle: Past and Present. Proceedings of 2nd International Field Symposium, Khanty Mansiisk, Russia, 2011, Ed. by S. E. Vomperskii (Novosibirsk, 2011), pp. 8–9 [in Russian].

    Google Scholar 

  115. T. T. Efremova, S. P. Efremov, and A. F. Avrova, “Coupling of Organic Carbon and Environmental Reaction in Swamp Waters,” in Peatlands of West Siberia and Carbon Cycle: Past and Present. Proceedings of 3nd International Field Symposium, Khanty Mansiisk, Russia, 2007, Ed. by S. E. Vomperskii (Novosibirsk, 2011), p. 18 [in Russian].

    Google Scholar 

  116. S. V. Briggs, M. T. Maher, and D. J. Tongway, “Dissolved and Particulate Organic Carbon in Two Wetlands in Southwestern New South Wales, Australia,” Hydrobiologia 264, 13–19 (1993).

    Article  Google Scholar 

  117. M. M. Romigh, Organic Carbon Flux at the Mangrove Soil-Water Column Interface in the Florida Coastal Everglades (Texas A&M University, 2005).

    Google Scholar 

  118. V. D. Markov, A. S. Olenin, L. A. Ospennikova, E. I. Skobeeva, and P. I. Khoroshev, World’s Peat Resources. A Handbook (Nedra, Moscow, 1988) [in Russian].

    Google Scholar 

  119. N. A. Shnyrev, “Problem of Methane Emanation from High Bogs in the Winter Period,” in Peatlands of West Siberia and Carbon Cycle: Past and Present. Proceedings of 2nd International Field Symposium, Khanty Mansiisk, Russia, 2011, Ed. by S. E. Vomperskii (Novosibirsk, 2011), pp. 139–140 [in Russian].

    Google Scholar 

  120. H. Joosten and J. Couwenberg, “Peatlands and Carbon,” in Assessment on Peatlands, Biodiversity and Climate Change, Ed. by F. Parish et al. (Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen, 2008), pp. 99–117.

    Google Scholar 

  121. H. J. Laanbroek, “Methane Emission from Natural Wetlands: Interplay between Emergent Macrophytes and Soil Microbial Processes. A Mini-Review,” Annals of Botany 105(1), 141–153 (2010).

    Article  Google Scholar 

  122. J. Limpens, F. Berendse, C. Blodau, J. G. Canadell, C. Freeman, J. Holden, N. Roulet, H. Rydin, and G. Schaepman-Strub, “Peatlands and the Carbon Cycle: from Local Processes to Global Implications—A Synthesis,” Biogeosciences 5, 1475–1491 (2008).

    Article  Google Scholar 

  123. J. Couwenberg, R. Dommain, and H. Joodten, “Greenhouse Gas Fluxes from Tropical Peatlands in South-East Asia,” Global Change Biology 16(6), 1715–1732 (2010).

    Article  Google Scholar 

  124. N. E. Shakhova, V. I. Sergienko, and I. P. Semiletov, “Contribution of Eastern Siberian Shelf to the Modern Methane Cycle,” Vestn. Ross. Akad. Nauk 79(6), 507–518 (2009).

    Google Scholar 

  125. N. Shakhova, I. Semiletov, and O. Gustafsson, “Methane from the East au]Siberian Arctic Shelf Response,” Science 329(5996), 1147–1148 (2010).

    Article  Google Scholar 

  126. B. Xu, J. Cao, J. Hansen, T. Yao, D. R. Joswia, N. Wang, G. Wu, M. Wang, H. Zhao, W. Yang, X. Liu, and J. He, “Black Soot and the Survival of Tibetan Glaciers,” PNAS, 1-5 (2009). www.pnas.org_cgi_doi_10.1073_pnas.pnas.0910444106.

    Google Scholar 

  127. J. D. Barker, M. J. Sharp, S. J. Fitzsimons, and R. J. Turner, “Abundance and Dynamics of Dissolved Organic Carbon in Glacier Systems,” Arctic, Antarctic, and Alpine Res. 38(2), 163–172 (2006).

    Article  Google Scholar 

  128. E. Hood, J. Fellman, R. G. M. Spencer, P. J. Hernes, R. Edwards, D. D. Amore, and D. Scott, “Glaciers as a Source of Ancient and Labile Organic Matter to the Marine Environment,” Nature, No. 462, 1044–1047 (2009).

    Google Scholar 

  129. M. L. Skidmore, J. M. Foght, and M. J. Sharp, “Microbial Life beneath a High Arctic Glacier,” Appl. Environ. Microbiol. 66(8), 3214–3220 (2000).

    Article  Google Scholar 

  130. Ponomareva, V.V. and Sotnikova, N.S., “Regularities of the Processes of Migration and Accumulation of the Elements in Podzolic Soils. (Lysimetric Studies),” in Biogeochemical Processes in Podzolic Soils (Nauka, Leningrad, 1972), pp. 6–55.

    Google Scholar 

  131. E. I. Pankova, Genesis of Salinization of Desert Soils (Pochvennyi institut im. V.V. Dokuchaeva, Moscow, 1992) [in Russian].

    Google Scholar 

  132. G. A. Zavarzin and V. N. Kudeyarov, “Soil as Main Source of Hydrocarbonic Acid in Reservoirs of Organic Carbon in Russia,” Vestnik Ross. Akad. Nauk 76(1), 14–29 (2006).

    Google Scholar 

  133. I. Sabol’ch, “Soil Salinization and Alkalinization,” in Modeling of Soil Salinization and Alkalinization, Ed. by V. A. Kovda and I. Sobol’ch (Nauka, Moscow, 1980), pp. 9–39 [in Russian].

    Google Scholar 

  134. E. M. Thurman Organic Geochemistry of Natural Waters (Kluwer Acad. Publ., 1985).

    Book  Google Scholar 

  135. R. C. Antweiler and J. I. Drever, “The Weathering of a Late Tertiary Volcanic Ash: Importance of Organic Solutes,” Geochim. Cosmochim. Acta 47, 623–629 (1983).

    Article  Google Scholar 

  136. N. D. Starikova, “Organic Matter,” in Pacific Ocean. Chemistry of the Pacific Ocean, Ed. by V. G. Kort (Nauka, Moscow, 1966), pp. 329–334 [in Russian].

    Google Scholar 

  137. E. A. Romankevich, Geochemistry of Organic Matter in the Ocean (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  138. S. V. Bruevich, Problems of Marine Chemistry (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  139. P. Meister, M. Prokopenko, C. G. Skilbeck, M. Watson, and J. A. McKenzie, “Compilation of Total Organic and Inorganic Carbon Data from Peru Margin and Eastern Equatorial Pacific Drill Sites (ODP Legs 112, 138, and 201),” Proc Ocean Drill. Progr. Sci. Res., Ed. by B. B. Jørgensen, S. L. D’Hondt, and D. J. Miller, 201, Ch. 8, 1–20 (2005).

    Google Scholar 

  140. D. Smith, “Dissolved Organic Carbon in Interstitial Waters, Equatorial Pacific and Peru Margin, ODP Leg 201,” Proc Ocean Drill. Progr. Sci. Res., Ed. by B. B. Jørgensen, S. L. D’Hondt, and D. J. Miller, 201, Ch. 9, 1–20 (2005).

    Google Scholar 

  141. A. B. Ronov, A. A. Yaroshevsky, and A. A. Migdisov, Chemical Structure of the Earth’s Crust and Geochemical Balance of Major Elements (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  142. A. A. Yaroshevsky, “Abundances of Chemical Elements in the Earth’s Crust,” Geochem. Int. 44(1), 48–55 (2006).

    Article  Google Scholar 

  143. Yu. I. Lyakhin and O. A. Alekin, “Saturation of Ocean Waters in Calcium Carbonate,” in Oceanology. Chemistry of Ocean. Chemistry of Ocean Waters, Ed. by O. K. Bordovskii and V. N. Ivanenkov (Nauka, Moscow, 1979), Vol. 1, pp. 96–107 [in Russian].

    Google Scholar 

  144. V. P. Zverev and I. A. Kostikova, Sedimentation Waters of the Caspian Sedimentary Basin (Masses and Mass Fluxes) (Nauchnyi mir, Moscow, 2008) [in Russian].

    Google Scholar 

  145. S. L. Shvartsev, Hydrochemistry of the Supergene Zone (Nedra, Moscow, 1998) [in Russian].

    Google Scholar 

  146. S. R. Krainov, B. N. Ryzhenko, and V. M. Shvets, Geochemistry of Groundwaters. Theoretical, Applied, and Ecological Aspects (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  147. I. S. Zetsker, World’s Groundwaters. Resources, Usage, and Forecast (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  148. V. V. Kolodii and O. D. Shtorgin, Organic Matter in Groundwaters of the Crimean-Black Sea Petroleum Province and Their Prospecting Significance (Naukova dumka, Kiev, 1982) [in Russian].

    Google Scholar 

  149. R. G. Dzhamalov and I. S. Zektser, “Underground Run-Off in Seas and Its Role in the Formation of Their Aqueous and Salt Balance,” in World’s Groundwaters: Resources, Use, and Forecasting, Ed. by I. S. Zektser (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  150. M. Taniguchi, W. C. Burnett, J. E. Cable, and J. V. Turner, “Investigation of Submarine Groundwater Discharge,” Hydrol. Process 16, 2115–2129 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vetrov.

Additional information

Original Russian Text © E.A. Romankevich, A.A. Vetrov, 2013, published in Geokhimiya, 2013, Vol. 51, No. 6, pp. 483–509.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romankevich, E.A., Vetrov, A.A. Masses of carbon in the Earth’s hydrosphere. Geochem. Int. 51, 431–455 (2013). https://doi.org/10.1134/S0016702913060062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702913060062

Keywords

Navigation