Skip to main content
Log in

Clarification of sources of material returned by Luna 24 spacecraft based on analysis of new images of the landing site taken by lunar reconnaissance orbiter

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

We describe the results of the geologic analysis of high-resolution (0.5 m/px) LROC NAC images of the landing site of the Luna 24 spacecraft, which landed in the southeastern part of Mare Crisium, drilled a borehole to the depth of ∼2 m and recovered a core, which was then delivered to the Earth. LROC NAC images show that the spacecraft landed on the rim of the 65-m crater Lev. Image analysis was aided by calculations of the expected thickness of ejecta from crater Lev found to be 0.5–1 m. Using these calculations and the results of photogeologic analysis, we reconsidered the characteristics of the Luna 24 core material. This led to an understanding of the geologic position of different parts of the Luna 24 core and allowed us to distinguish in the core the intervals dominated by: 1—effects of arrival of ejecta from the 6.5-km crater Fahrenheit (Zone IV), 2—gradual reworking of the local regolith by small impacts (Zones II and III), and 3—emplacement of ejecta of Lev crater, which is a secondary of the distant 22-km crater Giordano Bruno (Zone I). This understanding allowed us to propose that some additional new analyses of the Luna 24 material be undertaken, with emphasis on the study of Zone IV and Zone I. Additional analysis of zone IV could search for and identify material of ejecta from the crater Fahrenheit and their comparisons with local materials, while new analysis of Zone I could study the material derived from the deepest parts of the local regolith and search for material of the impactor (ejecta from the very young Giordano Bruno crater on the lunar farside) that formed Lev crater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Barsukov and C. P. Florensky, “The Lunar Soil from Mare Crisium: Preliminary Data (Abs.),” Lunar Planet. Sci., 8, 61–63 (1976).

    Google Scholar 

  2. A. Basu, D. S. McKay, and R. M. Fruland, Origin and Modal Petrography of Luna 24 Soils, in Mare Crisium: the View from Luna 24, (Pergamon Press, New York, 1978), pp. 321–337.

    Google Scholar 

  3. L. S. Tarasov, A. V. Ivanov, V. V. Vysochkin, O. D. Rode, M. A. Nazarov, A. I. Sherstyuk, “Acceptance and Primary Study of Regolith Core of “Luna-24”,” in Regolith from Mare Crisium (Nauka, Moscow, 1980a), pp. 45–50 [in Russian].

    Google Scholar 

  4. M. S. Robinson, J. B. Plescia, B. L. Jolliff, and S. J. Lawrence, “Soviet Lunar Sample Return Missions: Landing Site Identification and Geologic Context,” Planet. Space. Sci. 69, 76–88 (2012). http://dx.doi.org/10.1016/j.pss.2012.03.013

    Article  Google Scholar 

  5. J. W. Head, J. B. Adams, T. B. McCord, C. Pieters, and S. Zisk, “Regional Stratigraphy and Geologic History of Mare Crisium,” in Mare Crisium: the View from Luna 24, (Pergamon Press, New York, 1978), pp. 43–74.

    Google Scholar 

  6. C. Pieters, T. McCord, and J. B. Adams, “Regional Basalt Types in the Luna 24 Landing Area As Derived from Remote Observations,” Geophys. Rev. Lett. 3(11), 697–700 (1976).

    Article  Google Scholar 

  7. J. B. Adams, J. Head, T. B. McCord, C. Pieters, S. Zisk, “Mare Crisium: Regional Stratigraphy and Geologic History,” Geophys. Rev. Lett. 5, 313–316 (1978).

    Article  Google Scholar 

  8. A. E. Bence and T. L. Grove, “The Luna 24 Highland Component,” in Mare Crisium: the View from Luna 24, (Pergamon, New York, 1978), pp. 429–444.

    Google Scholar 

  9. P. Butler and D. A. Morrison, “Geology of the Luna 24 Landing Site,” Proc. Lunar Sci. Conf. 8, 3281–3301 (1977).

    Google Scholar 

  10. C. P. Florensky, A. T. Basilevsky, A. V. Ivanov, A. A. Pronin, and O. D. Rode, “Luna 24: Geological Setting of Landing Site and Characteristics of Sample Core (Preliminary Data),” Proc. Lunar Sci. Conf. 8, 3257–3279 (1977).

    Google Scholar 

  11. K. P. Florensky, A. A. Pronin, and A. T. Basilevsky, “Geology of Landing Site of “Luna-24”, in Lunar Soil from Mare Crisium (Nauka, Moscow, 1980), pp. 7–17 [in Russian].

    Google Scholar 

  12. T. A. Maxwell and F. El-Baz, “The Nature of Rays and Sources of Highland Material in Mare Crisium,” in Mare Crisium: the View from Luna 24, (Pergamon Press, New York, 1978), pp. 89–103.

    Google Scholar 

  13. A. T. Basilevsky and J. W. Head, “Age of Giordano Bruno Crater as Deduced from the Morphology of its Secondaries at the Luna 24 Landing Site,” Planet Space Sci. 73(1), 302–309 (2012). http://dx.doi.org/10.1016/j.pss.2012.08.017.

    Article  Google Scholar 

  14. M. Settle, V. J. Cintala, and J. W. Head, “Emplacement of Fahrenheit Crater Ejecta at the Luna 24 Site,” Moon and Planets 20, 281–300 (1979).

    Article  Google Scholar 

  15. K. R. Housen, R. M. Schmidt, and K. A. Holsapple, “Crater Ejecta Scaling Laws-Fundamental Forms Based on Dimensional Analysis,” J. Geophys. Res. 88, 2485–2499 (1983).

    Article  Google Scholar 

  16. B. A. Ivanov and L. I. Comissarova, “The Simple Hydrodynamic Model of Cratering (Abs.),” Lunar Sci. 8, 499–501 (1977).

    Google Scholar 

  17. N. Trask, “Size and Spatial Distribution of Craters Estimated from the au]Ranger Photographs,” in Ranger VIII and IX. Pt. II. NASA TR-32-80, (JPL, Pasadenam 1966), pp. 249–338.

    Google Scholar 

  18. E. C. Morris and E. M. Shoemaker, Craters. Surv. Project Final Rept. Part II. Sci. Res. TR 32-1265, (JPL, Pasadena. 1968).

    Google Scholar 

  19. K. P. Florensky, A.T. Basilevsky, A. A. Gurshtein, R. B. Zezin, A. A. Pronin, V. P. Poldosukhin, Z. V. Popova, and I. M. Taborko, “On Problem of Structers of Modern Mares,” in Modern Concepts Concerning Moon (Nauka, Moscow, 1972), pp. 21–45.

    Google Scholar 

  20. A. T. Basilevsky, “Estimation of Thickness and Degree of Reworking of Lunar Regolith from the Crater Denstity,” Kosm. Issled. 12, 606–609 (1974).

    Google Scholar 

  21. A. T. Basilevsky, “On the Evolution Rate of Small Lunar Craters,” Proc. Lunar Sci. Conf. 7, 1005–1020 (1976).

    Google Scholar 

  22. W. L. Quaide and V. R. Oberbeck, “Thickness Determinations of the Lunar Surface Layer from Lunar Impact Craters,” J. Geophys. Res. 73, 5247–5270 (1968).

    Article  Google Scholar 

  23. O. D. Rode, A. V. Ivanov, L. S. Tarasov, and M. I. Korina, “General Lithological-Morphological Characteristics of “Luna-24” Regolith,” Geokhimiya, No. 10, 1465–1476 (1977).

    Google Scholar 

  24. D. D. Bogard and W. C. Hirsch, “Noble Gases in Luna 24 Core Soils,” in Mare Crisium: The View from Luna 24, (Pergamon Press, New York, 1978), pp. 105–116.

    Google Scholar 

  25. O. D. Rode, A. V. Ivanov, and L. S. Tarasov, “Lithology and Stratigraphy of “Luna-24” Core,” in Lunar Soil from Mare Crisium (Nauka, Moscow, 1980), pp. 51–57 [in Russian].

    Google Scholar 

  26. A. V. Ivanov, E. S. Gorshkov, V. V. Zhukov, I. N. Ma-rov, and V. S. Urusov, “Distribution of Metallic Iron in Regolith of “Luna-24” Core,” Geokhimiya, No. 6, 940–945 (1978).

    Google Scholar 

  27. R. V. Morris, “FMR and Magnetic studies of Luna 24 Soils and >1 mm Soil Particles,” in “Mare Crisium: The View from Luna 24, (Pergamon Press, New York, 1978), pp. 117–123.

    Google Scholar 

  28. D. S. McKay, A. Basu, and G. Waits, “Grain Size and the Evolution of Luna 24 Soils,” in Mare Crisium: the view from Luna 24, (Pergamon Press, New York, 1978), pp. 125–136.

    Google Scholar 

  29. Yu. A. Ivanov, E. S. Gorshkov, and V. I. Pochtarev, “Magnetic Stratigraphy of “Luna-24” Regolith Core,” in Regolith from Mare Crisium (Nauka, Moscow, 1980), pp. 72–75.

    Google Scholar 

  30. I. K. Zadorozhnyi and A. V. Ivanov, “Content and Isotope Composition of Inert Gases in the Reference Samples of “Luna-24” Regolith,” in Regolith from Mare Crisum (Nauka, Moscow, 1980), pp. 287–299 [in Russian].

    Google Scholar 

  31. G. E. Blanford and G. C. Wood, “Particle Track Densities in the Luna 24 Core,” in Mare Crisium: the View from Luna 24, (Pergamon Press, New York, 1978), pp. 157–163.

    Google Scholar 

  32. L. L. Kashkarov, L. I. Genaeva, and A. K. Lavrukhina, “Study of Tracks in Substance of Four Reference Samples of “Luna-24” Core,” in Regolith from Mare Crisium (Nauka, Moscow, 1980), pp. 280–286 [in Russian].

    Google Scholar 

  33. G. J. Taylor, R. D Warner, and K. Keil, “VLT Mare Basalts: Impact Mixing, Parent Magma Types, and Petrogenesis,” in Mare Crisium: the View from Luna 24, (Pergamon Press, New York, 1978), pp. 357–370.

    Google Scholar 

  34. V. L. Barsukov, L. S. Tarasov, L. V. Dmitriev, G. M. Kolesov, I. D. Shevaleevsky, and A. V. Garanin, “The Geochemical and Petrochemical Features of Regolith and Rocks from Mare Crisium (Preliminary Data),” Proc. Lunar Sci. Conf. 8, 3319–3332 (1977).

    Google Scholar 

  35. H. A. Papp, I. M. Steele, and J. V. Smith, “Luna 24: Mineralogy of 90–150 Micrometer Fraction: Implications for Remote Sampling of Regolith,” in Mare Crisium: The View from Luna 24 (Pergamon Press, New York, 1978), pp. 245–264.

    Google Scholar 

  36. G. Ryder and U. B. Marvin, “On the Origin of Luna 24 Basalts and Soils,” in Mare Crisium: The View from Luna 24, Ed. by R. B. Merril and J. J. Papike, (Pergamon Press, New York, 1978), pp. 339–355.

    Google Scholar 

  37. D. P. Blanchard, J. C. Brannon, E. Aaboe, and J. R. Budahn, “Major and Trace Element Chemistry of Luna 24 Samples from Mare Crisium,” in Mare Crisium: The View from Luna 24“ (Pergamon Press, New York, 1978), pp. 613–630.

    Google Scholar 

  38. M. M. Fugzan, Dang Wu Minh, L. S. Tarasov, G. M. Kolesov, and Yu. A. Shukolyukov, “40Ar-39Ar Dating of Lunar Rocks from Mare Crisium,” Geokhimiya, No. 4, 469–479 (1986). [in Russian].

    Google Scholar 

  39. R. H. Steiger and E. Jaeger, “Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology,” Earth Planet. Sci. Lett. 36, 359–362 (1977).

    Article  Google Scholar 

  40. J. L. Birck, G. Manhes, P. Richard, J. L. Joron, M. Treuil, and C. J. Allegre, “87Rb/87Sr Age of Luna 24 Microgabbros, and Isotopic and Trace Element Study of Soil 24096,” in Papers Submitted to the Conference on Luna 24, (1977), pp. 34–36.

    Google Scholar 

  41. G. J. Wasserburg, F. Radicati di Brozolo, D. A. Papanastassiou, M. T. McCulloch, J. C. Huneke, R. F. Dymek, D. J. DePaolo, A. A. Chodos, and A. L. Albee, “Petrology, Chemistry, Age, and Irradiation History of Luna 24 Samples,” in Mare Crisium: The View from Luna 24 (Pergamon Press, New York, 1978), pp. 657–678.

    Google Scholar 

  42. A. Stettler and F. Albarede, “39Ar-40Ar Systematics of Two Millimeter-Size Rock Fragments from Mare Crisium,” Earth Planet. Sci. Lett. 78, 401–406 (1978).

    Article  Google Scholar 

  43. O. A. Schaeffer, A. E. Bence, G. Eichhorn, J. J. Papike, and D. T. Vaniman, “39Ar-40Ar and Petrologic Study of Luna 24 Samples 24077,13 and 24077,63,” Proc. Lunar Planet. Sci. Conf. 9, 2363–2373 (1978).

    Google Scholar 

  44. J. Hennessy and G. Turner, “40Ar-39Ar Ages and Irradiation History of Luna 24 Basalts,” Phil. Trans. R. Soc. London, Ser. A 297(1428), 27–39 (1980).

    Article  Google Scholar 

  45. R. Burgess and G. Turner, “Laser Argon-40-Argon-39 Age Determinations of Luna 24 Mare Basalts,” Meteorit. Planet. Sci 33, 921–935 (1998).

    Article  Google Scholar 

  46. B. A. Cohen, G. A. Snyder, C. M. Hall, L. A. Taylor, M. A. Nazarov, “Argon-40-Argon-39 Chronology and Petrogenesis Along the Eastern Limb of the Moon from Luna 16, 20 and 24 Samples,” Meteorit. Planet. Sci 36, 1345–1366 (2001).

    Article  Google Scholar 

  47. D. Stoffler, G. Ryder, B. A. Ivanov, N. A. Artemieva, M. J. Cintala, and R. A. F. Grieve, “Cratering History and Lunar Chronology,” Rev. Mineral. Geochem. 60, 519–596 (2006).

    Article  Google Scholar 

  48. T. Morota, J. Haruyama, H. Miyamoto, C. Honda, M. Ohtake, Y. Yokota, T. Matsunaga, N. Hirata, H. Demura, H. Takeda, Y. Ogawa, and Y. Kimura, “Formation Age of the Lunar Crater Giordano Bruno,” Meteorit. Planet. Sci., No. 8, 1115–1120 (2009).

    Google Scholar 

  49. D. E. Gault, “Saturation and Equilibrium Conditions for Impact Cratering on the Lunar Surface: Criteria and Implications,” Radio Sci. 5(2), 273–291 (1970).

    Article  Google Scholar 

  50. J. Fritz, “Impact Ejection of Lunar Meteorites and the Age of Giordano Bruno,” Icarus 221, 1183–1186 (2012).

    Article  Google Scholar 

  51. A. T. Bazilevsky, B. A. Ivanov, K. P. Florenskii, O. I. Yakovlev, V. I. Fel’dman, and L. B. Granovskii, Impact Craters on the Moon and Planets (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

References Quoted in the Appendix

  1. K. R. Housen, R. M. Schmidt, and K. A. Holsapple, “Crater ejecta scaling laws-Fundamental forms based on dimensional analysis,” J. Geophys. Res. 88, 2485–2499 (1983).

    Article  Google Scholar 

  2. D. E. Gault and J. A. Wedekind, “Experimental hypervelocity impact into quartz sand. II-Effects of gravitational acceleration,” in Impact and Explosion Cratering” (Pergamon Press, New York, 1977), pp. 1231–1244.

    Google Scholar 

  3. V. R. Oberbeck, “Laboratory simulation of impact cratering with high explosives,” J. Geophys. Res. 1971. V. 76. P. 5732–5749.

    Article  Google Scholar 

  4. R. H. Carlson and G. D. Jones, “Distribution of ejecta from cratering explosions in soils,” J. Geophys. Res. 70, 1897–1910 (1965).

    Article  Google Scholar 

  5. R. Arvidson, R. J. Drozd, C. M. Hohenberg, C. J. Morgan, and G. Poupeau, “Horizontal transport of the regolith, modification of features, and erosion rates on the lunar surface,” Moon 13, 67–79 (1975).

    Article  Google Scholar 

  6. M. S. Robinson, J. B. Plescia, B. L. Jolliff, and S. J. Lawrence, “Soviet lunar sample return missions: Landing site identification and geologic context,” Planet. Space Sci., 2012. (in press).

    Google Scholar 

  7. Lunar Sourcebook—A User’s Guide to the Moon (Cambridge University Press, Cambridge, 1991).

  8. K. A. Holsapple and R. M. Schmidt, A materialstrength model for apparent crater volume,” Proc. Lunar Planet. Sci. Conf. 10, 2757–2777 (1979).

    Google Scholar 

  9. W. L. Quaide and V. R. Oberbeck, “Thickness determinations of the lunar surface layer from lunar impact craters,” J. Geophys. Res. 73, 5247 (1968).

    Article  Google Scholar 

  10. V. R. Oberbeck, “Application of high explosion cratering data to planetary problems,” in Impact and Explosion Cratering: Planetary and Terrestrial Implications (Pergamon Press, New York, 1977), pp. 45–65.

    Google Scholar 

  11. E. P. Forston and F. R. Brown, “Effects of soil-rock interface on cratering morphology,” Tech. Rep. No. 29487 U.S. Army. Eng. St., Corp. of Eng., Vicksburg, Miss., 28 (1958).

    Google Scholar 

  12. A. J. Piekutowski, “Cratering mechanisms observed in laboratory-scale high-explosive experiments,” in Impact and Explosion Cratering: Planetary and Terrestrial Implications, (Pergamon Press, New York, 1977), pp. 67–102.

    Google Scholar 

  13. D. J. Roddy, “High-explosive cratering analogs for bowl-shaped, central uplift, and multiring impact craters,” Proc. Lunar Planet. Sci. Conf. 7, 3027–3056 (1976).

    Google Scholar 

  14. Nuclear Geoplosics Sourcebook. Volume IV. Part II. Empirical Analysis of Nuclear and High-Explosive Cratering and Ejecta (General Electric Company-TEMPO, Santa Barbara, 1979).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Basilevsky.

Additional information

Published in Russian in Geokhimiya, 2013, Vol. 51, No. 6, pp. 510–528.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basilevsky, A.T., Ivanov, B.A., Ivanov, A.V. et al. Clarification of sources of material returned by Luna 24 spacecraft based on analysis of new images of the landing site taken by lunar reconnaissance orbiter. Geochem. Int. 51, 456–472 (2013). https://doi.org/10.1134/S0016702913060025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702913060025

Keywords

Navigation