Skip to main content
Log in

Thermochemical study of natural montmorillonite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper reports results of an experimental thermochemical study (in a heat-flux Tian-Calvet microcalorimeter) of montmorillonite from (I) the Taganskoe and (II) Askanskoe deposits and (III) from the caldera of Uzon volcano, Kamchatka. The enthalpy of formation Δ f H 0el (298.15 K) of dehydrated hydroxyl-bearing montmorillonite was determined by melt solution calorimetry: −5677.6 ± 7.6 kJ/mol for Na0.3Ca0.1(Mg0.4Al1.6)[Si3.9Al0.1O10](OH)2 (I), −5614.3 ± 7.0 kJ/mol for Na0.4K0.1(Ca0.1Mg0.3Al1.5Fe 3+0.1 )[Si3.9Al0.1O10](OH)2 (II), −5719 ± 11 kJ/mol for K0.1Ca0.2Mg0.2(Mg0.6Al1.3Fe 3+0.1 ) [Si3.7Al0.3O10](OH)2 (III), and −6454 ± 11 kJ/mol for water-bearing montmorillonite (I) Na0.3Ca0.1(Mg0.4Al1.6)[Si3.9Al0.1O10](OH)2 · 2.6H2O. The paper reports estimated enthalpy of formation for the smectite end members of the theoretical composition of K-, Na-, Mg-, and Ca-montmorillonite and experimental data on the enthalpy of dehydration (14 ± 2 kJ per mole of H2O) and dehydroxylation (166 ± 10 kJ per mole of H2O) for Na-montmorillonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Minerals, Ed. by F. V. Chukhrov (Nauka, Moscow, 1992), Vol. 4 [in Russian].

    Google Scholar 

  2. M. Kawano and K. Tomita, “X-ray Studies of Rehydratation Behaviors for Montmorillonite,” Clay Sci. 7(5), 277–287 (1989).

    Google Scholar 

  3. A. F. van Groos and S. Guggenheim, “Dehydratation of K-Exchanged Montmorillonite at Elevated Temperatures and Pressure,” Clays Clay Miner. 34(3), 281–286 (1986).

    Article  Google Scholar 

  4. A. F. van Groos and S. Guggenheim, “Dehydroxylation of Ca- and Mg-Exchanged Montmorillonite,” Am. Mineral. 74, 627–636 (1989).

    Google Scholar 

  5. G. Dios Cancela, F. J. Huertas, E. Romero Taboada, F. Sanches-Rasero, A. Hernadez Laguna, “Adsorption of Water Vapor by Homoionic Montmorillonites: Heats of Adsorption and Desorption,” J. Colloid. Int. Sci. 185, 343–354 (1997).

    Article  Google Scholar 

  6. M. Sakizci, B. E. Alver, O. Alver, and E. Yorukogullari, “Spectroscopic and Thermal Studies of Bentonites from Unye, Turkey,” J. Mol. Struct. 969, 187–191 (2010).

    Article  Google Scholar 

  7. H. Gailhanou, J. C. Miltenburg, J. Roges, J. Olives, M. Amouric, E. C. Gaucher, and P. Blanc, “Thermodynamic Properties of Anhydrous Smectite MX-80, Illite IMt-2 and Mixed-Layer Illite-Smectite ISCz-1 as Determined by Calorimetric Methods. Part I: Heat Capacities, Heat Contents, and Entropies,” Geochim. Cosmochim. Acta 71, 5463–5473 (2007).

    Article  Google Scholar 

  8. P. Vieillard, “A New Method for the Prediction of Gibbs Free Energies of Formation of Hydrated Clay Minerals Based on the Electronegativity Scale,” Clays Clay Miner. 48(4), 459–473 (2000).

    Article  Google Scholar 

  9. O. Vidal and B. Dubacq, “Thermodynamic Modeling of Clay Dehydration, Stability and Compositional Evolution with Temperature, Pressure, and H2O Activity,” Geochim. Cosmochim. Acta 73, 6544–6564 (2009).

    Article  Google Scholar 

  10. H. W. van der Marel and H. Beutelspacher, Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures (Elsevier, Amsterdam-Oxford-New York, 1976).

    Google Scholar 

  11. J. Modejova and P. Komadel, “Baseline Studies of the Clay Minerals Society Source Clays: Infrared Methods,” Clays Clay Miner. 49(5), 410–432 (2001).

    Article  Google Scholar 

  12. J. Modejova and P. Komadel, “Information Available from Infrared Spectra of the Fine Fractions of Bentonites,” in The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides, Ed. by J. Theo Cloprogge, CMS Workshop Lectures, 13, 65–98 (2005).

    Google Scholar 

  13. V. C. Farmer and J. D. Russell, “The Infra-Red Spectra of Layer Silicates,” Spectrochim. Acta 20, 1149–1173 (1964).

    Article  Google Scholar 

  14. I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical Study of the CaO-MgO-SiO2 System,” Geokhimiya, No. 12, 1811–1825 (1979).

    Google Scholar 

  15. R. A. Robie and B. S. Hemingway, “Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures,” U.S. Geol. Surv. Bull., No. 2131, (1995).

    Google Scholar 

  16. M. V. Eirish, Z. N. Eirish, V. M. Bezzubov, N. V. Evdokimova, and E. N. Permyakov, “Crystal Chemical and Structural Features of Montmorillonite and Their Influence on the Properties of Bentonite Clays,” in Bentonites (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  17. M. V. Eirish and A. A. Dvorechenskaya, NGR Spectroscopic Study of the Setting and Role of Fe3+ Ions in the Structure of Clay Minerals: A Change in the State of Fe3+ Ions during the Dehydration and Dehydroxilation of Montmorillonite, Geokhimiya, No. 4, 597–605 (1976).

    Google Scholar 

  18. M. Onal and Y. Sarikaya, “Thermal Behavior of a Bentonite,” J. Therm. Anal. Calorim. 90, 167–172 (2007).

    Article  Google Scholar 

  19. I. A. Kiseleva, A. Navrotsky, I. A. Belitsky, and B. A. Fursenko, “Thermochemical Study of Calcium Zeolites-Heulandite and Stilite,” Am. Mineral. 86, 448–455 (2001).

    Google Scholar 

  20. A. Navrotsky and W. J. Coons, “Thermochemistry of Some Pyroxenes and Related Compounds,” Geochim. Cosmochim. Acta. 40, 1281–1295 (1976).

    Article  Google Scholar 

  21. I. A. Kiseleva, “Thermodynamic Properties and Stability of Pyrope,” Geokhimiya, No. 6, 845–854 (1976).

    Google Scholar 

  22. L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical Study of Natural Pollucite,” Thermochim. Acta 403 251–256 (2003).

    Article  Google Scholar 

  23. L. P. Ogorodova, I. A. Kiseleva, L. V. Mel’chakova, M. F. Vigasina, and E. M. Spiridonov, “Calorimetric Determination of the Enthalpy of Formation of Pyrophyllite” Russ. J. Phys. Chem. 85(9), 1492–1494 (2011).

    Article  Google Scholar 

  24. H. Gailhanou, Determination Eperimentale des Proprietes Thermodynamiques et Etude des Nanostructures de Mineraux Argileux, These de Docteaur (Universite aix Marseilles, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Ogorodova.

Additional information

Original Russian Text © L.P. Ogorodova, I.A. Kiseleva, L.V. Melchakova, M.F. Vigasina, V.V. Krupskaya, 2013, published in Geokhimiya, 2013, Vol. 51, No. 6, pp. 541–551.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogorodova, L.P., Kiseleva, I.A., Melchakova, L.V. et al. Thermochemical study of natural montmorillonite. Geochem. Int. 51, 484–494 (2013). https://doi.org/10.1134/S0016702913040058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702913040058

Keywords

Navigation