Skip to main content
Log in

Hydrothermal and thermal treatment of natural clinoptilolite zeolite from Bigadiç, Turkey: An experimental study

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The clinoptilolite rich zeolite from Bigadiç which was formed from alteration of volcanic glass were treated with acidic (HCl, H3BO3, H3PO4), alkaline (KOH, NaOH) solutions. Hydrothermally treated and untreated samples were heat treated at 400, 550 and 700°C. XRD, ICP-MS and N2 gas adsorption were used for physicochemical characterization of zeolites. Considering the Si/Al > 4 and Na+K/Ca+Mg < 1 ratios, zeolite sample is included to earth alkali clinoptilolite class (Heu II) which is also revealed by thermal treatments. Since zeolite structure contains low alkalies it was at collapsed 550°C.

The removal of oxide elements efficiency of acids and alkalies were in the order of HCl > H3PO4 > HBO3 > KOH > NaOH. XRD analysis indicated that the structure of zeolite was not altered with acids and alkali treatments. The structure of zeolite treated with HCl and other acids started to deform at 400 and 550°C respectively. In treatment with HCl, Si/Al ratio increases with significant a decrease in K content which resulted in a decrease in the heat stability of zeolite. No change was observed in the structure and thermal stability of clinoptilolite after alkali treatments. The fact that although significant amount of Na is removed with H3BO3 acid and Na is increased with NaOH but the thermal stability remains the same indicates that Na cation is not an important parameter as much as K. HCl and H3PO4 acid treatments increased the surface area depending on the dissolution of amorphous material and H3PO4 was found to be more effective. However, the total pore size decreased due to formation of new micropores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Boles, “Composition, Optical Properties, Cell Dimensions and Thermal Stability of Some Heulandite Group Zeolites,” Am. Mineral. 57, 1463–1493 (1972).

    Google Scholar 

  2. A. Alietti, “Polymorphism and Crystal Chemistry of Heulandites and Clinoptilolites,” Am. Mineral. 57, 1448–1462 (1970).

    Google Scholar 

  3. B. Mason and L. B. Sand, “Clinoptilolite from Patagonia. The Relationships between Clinoptilolite and Heulandite,” Am. Mineral. 45, 341–350 (1960).

    Google Scholar 

  4. F. A. Mumton, “Clinoptilolite Redefined,” Am. Mineral. 45, 351–359 (1960).

    Google Scholar 

  5. A. Alietti, G. Gottardi, and L. Poppi, “The Heat Behavior of Cation Exchanged Zeolites with Heulandite Structure,” Tschermarks Min. Pet. Mitt. 21, 291–298 (1972).

    Article  Google Scholar 

  6. H. Minato and M. Utada, “Clinoptilolite from Japan,” Adv. Chem. Series 101, 311–316 (1971).

    Article  Google Scholar 

  7. M. Doula and A. Dimirkou, “Copper Adsorption and Si, Al, Ca and Na Release from Clinoptilolite,” J. Colloid. Inter. Sci. 245, 237–.

  8. C. H. Baerlocher, W. M. Meier, and D. H. Oslon, “Atlas of Zeolite Framework Types,” (Elsevier, Amsterdam, 2001).

    Google Scholar 

  9. V. Campos, L. C. Morais, and P. M. Buncler, “Removel of Chromate from Aqueous Solution using Treated Natural Zeolite,” Environ. Geol. 52(8), 1521–1525 (2006).

    Article  Google Scholar 

  10. E. Valcke, B. Engels, and A. Cremers, “The Use of Zeolites as Amendments Radiocaesium- and Radiostrontium-Contaminated Soils, a Soil-Chemical Approach, Cs-K Exchange in Clinoptilolite and Morderite,” Zeolites 18, 205–211 (1997).

    Article  Google Scholar 

  11. M. W. Ackley, S. R. Rege, and H. Saxena, “Application of Natural Zeolites in the Purification and Separation of Gases,” Micropor. Mesopor. Mater., 61, 25–42 (2003).

    Article  Google Scholar 

  12. D. Zhao, K. Cleare, C. Oliver, et al., “Characteristics of the Synthetic Heulandite-Clinoptilolite Family of Zeolites,” Micropor. Mesopor. Mater., 21, 371–379 (1997).

    Article  Google Scholar 

  13. S. W. Jeong and J. H. Kim, G. Seo, “Liquid-Phase Degradation of HDPE over Alkali-Treated Natural Zeolite Catalysts,” Korean J. Chem. Emg. 18, 848 (2001).

    Article  Google Scholar 

  14. Ch. Panagiotopoulou, E. Kontori, Th. Perraki, et al., “Dissolution of Aluminosilicate Minerals and By-Products in Alkaline Media,” J. Mater. Sci. Lett. 42(9), 2967–2973 (2006).

    Google Scholar 

  15. H. C. Lee, H. C. Woo, R. Ryoo, et al., “Skeletal Isomerization of N-butanes to Isobutene over Acid-Treated Natural Clinoptilolite Zeolites,” Appl. Catal. 196, 135–142 (2000).

    Article  Google Scholar 

  16. G. E. Christidis, S. Kosiari, and E. Petavratzi, “Acid Activation and Bleaching Capacity of Bentonites from the Troodos Ophiolite, Cyprus,” Appl. Clay Sci. 24, 79–91 (2003).

    Article  Google Scholar 

  17. R. G. Gevorkyan, H. H. Sargsyan, G. Karamyan, et al., “Study of Absorption Properties of Modified Zeolites,” Chem. Erde — Geochemistry, 62(3), 237–242 (2002).

    Article  Google Scholar 

  18. C. Helvacı and F. Orti, “Sedimentology and Diagenesis of Miocene Clemanite-Ulexite Deposits (Western Anatolia, Turkey),” J. Sediment. Res. 68(5), 1021–1033, (1998).

    Article  Google Scholar 

  19. H. Yalçın and M. N. Gündoǧdu, “Emet ve Kırka Volkanosedimanter Gölsel Basenlerinde Zeolitlerin Kimyasal Bileşimleri, Kristal Morfolojileri ve ısıil kararlılıkları arasındaki ilişkiler,” Doǧa-Türk Yerbilimleri Dergisi 1, 63–75, (1992). (In Turkish).

    Google Scholar 

  20. Erkül, F., Helvacı, C., Sözbilir, H., “Olivine Basalt and Trachyandesite Peperites formed at the Subsurface/Surface Interface of a Semi-Arid Lake: An Example from the Early Miocene Bigadi-Basin, Western Turkey,” J. Volcanol. Geotherm. Res. 149, 240–262, (2006).

    Article  Google Scholar 

  21. M. N. Gündoǧdu, H. Yalçın, A. Temel, et al., “Geological, Mineralogical and Geochemical Characteristics of Zeolite Deposits Associated with Borates in the Bigadi-, Emet and Kırka Neogene Lacustrine Basins, Western Turkey,” Mineral Deposita 31, 492–451 (1996).

    Article  Google Scholar 

  22. M.N. Gündoǧdu, Neojen Yaşlı Bigadiç Sedimanter Baseninin Jeolojik, Mineralojik ve Jeokimyasal Incelenmesi, PhD. Thesis (Ankara, 1982). (In Turkish).

    Google Scholar 

  23. R. Toprak and I. Girgin, “Aktifle tirilmi Klinoptilolit ile Deri Sanayii atιk Sularιndan Kromun Giderilmesi,” in TUB TAK Ed. by T. J. Engin., Environ. Sci. 24, 343–351 (2000) (In Turkish).

    Google Scholar 

  24. F. Cakicioǧlu-Ozkan and S. Ulku, “The Effect of HCl Treatment on Water Vapor Adsorption Characteristics of Clinoptilolite Rich Natural Zeolite,” Micropor. Mesopor. Mater. 77, 47–53, (2005).

    Article  Google Scholar 

  25. S. Brunauer, P. H. Emmet and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc. 60, 309–319, (1938).

    Article  Google Scholar 

  26. E. P. Barrett, L. G. Joyner, and P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances: I. Computations from Nitrogen Isotherms,” J. Am. Chem. Soc., 73, 373–380, (1951).

    Article  Google Scholar 

  27. M. M. Dubinin, “The Potential Theory of Adsorption of Gases and Vapors au]for Adsorbents with Energetically Nonuniform Surfaces,” Chem. Rev. 60, 1–70, (1960).

    Article  Google Scholar 

  28. S. Yamamoto, S. Suriyama, M. Osamu, et al., “Dissolution of Zeolite in Acidic and Alkaline Aqueous Solutions as Revealed by AFM Imaging,” J. Phys. Chem. 100, 474–482, (1996).

    Article  Google Scholar 

  29. K. Okada, N. Arimitsu, Y. Kameshima, et al., “Preparation of Porous Silica from Chlorite by Selective Acid Leaching,” Appl. Clay Sci. 30, 116–124, (2005).

    Article  Google Scholar 

  30. W. P. Gates, M. D. Anderson, M. D. Raven, et al., “Mineralogy of Bentonite from Miles, Quesland, Australia and Characterisation of Acid Activation Products,” Clay Geotechn. Eng., Appl. Clay Sci. 20, 189–197 (2002).

    Article  Google Scholar 

  31. K. Okada, A. Shimail, T. Takei, et al., “Preparation of Microporous Silica from Metakaolinite by Selective Leaching Method,” Micropor. Mesopor. Mater. 21, 289–296 (1998).

    Article  Google Scholar 

  32. M. Rozic, S. Cerjan-Stefanovic, and L. Curkovic, “Evaluation of Croation Clinoptilolite and Montmorillonit-Rich Tuffs Ammonium Removal,” Croat. Chem. Acta 75, 255–269, (2002).

    Google Scholar 

  33. X. Cheng, Y. Zhong, J. Wang, et al., “Studies on Modificaton and Structural Ultra-Stabilization of Natural STI Zeolite,” Micropor. Mesop. Mater. 83, 233–243 (2005).

    Article  Google Scholar 

  34. N. C. Brady, The Nature and Properties of Soils, 14th Ed. (New York, 1990).

    Google Scholar 

  35. N. Kantiramis, C. M. Chrissafis, and K. Paraskevopoulos, “Thermal Distinction of HEU-Type Mineral Phases Contained in Greek Zeolite-Rich Volcaniclastic Tuffs,” Eur. J. Miner. 18(4), 509–516, (2006).

    Article  Google Scholar 

  36. Sr. Petrov,, “X-Ray Powder Diffraction Studies of Cation Exchanged Natural Zeolites,” in Mat. 1st. Nat. Symp. Diffr. Methods, 156 (1983).

    Google Scholar 

  37. R. I. Iznaga, A. Gomez, G. Rodriguez-Fuentes, et al., “Natural Clinoptilolite as Exchanger of Ni+ and NH +4 Ions under Hydrothermal Conditions and High Ammonia Concentration,” Micropor. Mesopor. Mater. 53, 71–80 (2002).

    Article  Google Scholar 

  38. A. Rivera, G. Rodríguez-Fuentes, and E. Altshuler, “Characterization and Neutralizing Properties of a Natural Zeolite/Na2CO3 Composite Material,” Micropor. Mesopor. Mater. 24, 51–58, (1998).

    Article  Google Scholar 

  39. A. Alietti, M. F. Brigatti, and L. Poppi, “Natural Carich Clinoptilolite (Heulandites of Group 3: New Data and Review,” N. Jb. Miner. 11, 493–501 (1977).

    Google Scholar 

  40. P. Misaelides, A. Godelitsas, F. Link, et al., “Application of the Al (pγ)28 Si Nuclear Reaction to the Characterization of the Near Surface Layers of Acid Treated HEU-Type Zeolite Crystals,” Micropor. Mesopor. Mater. 6, 37–42, (1996).

    Article  Google Scholar 

  41. A. Alberti, “The Crystal Structure of Two Clinoptilolites,” Tshermarks Min. Pet. Mitt. 19, 176–184, (1975).

    Google Scholar 

  42. A. Langella, M. Pansini, G. Cerr, et al., “Thermal Behavior of Natural and Cation-Exchanged Clinoptilolite from Sardinia (Italy),” Clays Clay Miner. 51(6), 625–633, (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dicle Bal Akkoca.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akkoca, D.B., Yιlgιn, M., Ural, M. et al. Hydrothermal and thermal treatment of natural clinoptilolite zeolite from Bigadiç, Turkey: An experimental study. Geochem. Int. 51, 495–504 (2013). https://doi.org/10.1134/S0016702913040022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702913040022

Keywords

Navigation