Geochemistry International

, Volume 51, Issue 1, pp 1–12 | Cite as

Kinetics of C, N, and Xe release during the quasi-isothermal pyrolysis and subsequent oxidation of nanodiamond from the Orgueil CI meteorite

  • A. V. Fisenko
  • A. B. Verchovsky
  • L. F. Semjonova


Analysis of the C, N, and Xe release kinetics of intermediate-sized nanodiamond fraction from the Orgueil CI meteorite during isothermal pyrolysis conducted for the first time and subsequent oxidation indicates that (a) the rate of C, N, and Xe release at pyrolysis at a constant temperature decreases with time; (b) the relative amount of released Xe, which mostly has a normal isotopic composition (Xe-P3) at various pyrolysis time up to 800°C, is controlled, first of all, by the heating temperature, whereas the amount of N is controlled by both the temperature and heating time; and (c) prolonged pyrolysis notably modifies the distribution of nitrogen of normal (δ15N = 0) and anomalous (δ15N= −350‰) isotopic composition in diamond grains. The identified features of the C and N release kinetics are explained by differences in the binding energy of chemically adsorbed O with C atoms and the accommodation of the main amounts of N in extended defects of the crystal structure of nanodiamond. The major factors of the decrease in the Xe-P3 release rate during the isothermal pyrolysis of nanodiamond are either the differences between the Xe desorption parameters of the traps in graphite-like phases containing Xe-P3 or the differences between the radiation-induced defectiveness of grains of the population containing implanted Xe-P3. Our results led us to conclude that (1) meteoritic nanodiamond contains relatively low amounts of a phases carrying the P3 component of noble gases, regardless of the nature of this component, and (2) the population of nanodiamond grains containing most of isotopically anomalous nitrogen was produced at a high rate to preserve this nitrogen, first of all, at extended defects in the diamond crystal structure.


nanodiamond meteorites carbon nitrogen xenon pyrolysis oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. R. Huss, “Ubiquitous Interstellar Diamond and SiC in Primitive Chondrites: Abundances Reflect Metamorphism,” Nature 347(6289), 159–162 (1990).CrossRefGoogle Scholar
  2. 2.
    R. S. Lewis, E. Anders, and B. T. Draine, “Properties, Detectability and Origin of Interstellar Diamonds in Meteorites,” Nature 339, 117–221 (1989).CrossRefGoogle Scholar
  3. 3.
    P. Hoppe, R. Strebel, P. Eberhardt, S. Amari, and R. S. Lewis, “Small SiC Grains and Nitride Grain of Circumstellar Origin from the Murchison Meteorite: Implications for Stellar Evolution and Nucleosynthesis,” Geochim. Cosmochim. Acta 60, 883–999 (1996).CrossRefGoogle Scholar
  4. 4.
    P. Hoppe, S. Amari, E. Zinner, and R. S. Lewis, “Isotopic Compositions of C, N, O, Mg, and Si, Trace Element Abundances, and Morphologies of Single Circumstellar Graphite Grains in Four Density Fractions from the Murchison Meteorite,” Geochim. Cosmochim. Acta 50, 4029–4056 (1995).CrossRefGoogle Scholar
  5. 5.
    A. B. Verchovsky, A. V. Fisenko, L. F. Semjonova, I. P. Wright, M. N. Lee, and C. T. Pillinger, “C, N and Noble Gas Isotopes in Grain Size Separates of Presolar Diamonds from Efremovka,” Science 281, 1165–1168 (1998).CrossRefGoogle Scholar
  6. 6.
    A. V. Fisenko, A. B. Verchovsky, L. F. Semenova, and K. T. Pillinger, “Noble Gases in the Grain-Size Fractions of Presolar Diamond from the Boriskino CM2 Meteorite,” Geochem. Int. 42(8), 697–707 (2004).Google Scholar
  7. 7.
    A. V. Fisenko, A. B. Verchovsky, L. F. Semjonova, and C. T. Pillinger, “Interstellar Diamond: The Analysis Results for Carbon, Nitrogen, and Noble Gases in Different Grain-Size Fractions,” Solar Syst. Res. 34(1), 20–36 (2000).Google Scholar
  8. 8.
    A. B. Verchovsky, I. P. Wright, A. V. Fisenko, L. F. Semjonova, and C. T. Pillinger, “Ion Implantation Into Presolar Diamonds: Experimental Simulation,” J. Conf. Abstracts, Goldschmidt (2000). (Cambridge Publications, Oxford, 2000), CD ROM 1050.Google Scholar
  9. 9.
    G. R. Huss and R. S. Lewis, “Noble Gases in Presolar Diamonds. I: Three Distinct Components and Their Implications for Diamond Origin,” Meteoritics 29, 791–810 (1994).Google Scholar
  10. 10.
    A. P. Koscheev, M. D. Gromov, K. Mohapatra, and U. Ott, “History of Trace Gases in Presolar Diamonds Inferred from Ion-Implantation Experiments,” Nature 412, 615–617 (2001).CrossRefGoogle Scholar
  11. 11.
    G. R. Huss, U. Ott, and A. P. Koscheev, “Noble Gases in Presolar Diamonds III: Implications of Ion Implantation Experiments with Synthetic Nanodiamonds,” Met. Planet. Sci. 43, 1811–1826 (2008).CrossRefGoogle Scholar
  12. 12.
    A. V. Fisenko and L. F. Semjonova, “On Nature of Bimodal Release of Noble Gases during Pyrolysis of the Meteoritic Nanodiamond,” Geochem. Int. 48(12), 1177–1184 (2010).CrossRefGoogle Scholar
  13. 13.
    S. S. Russell, J. W. Arden, and C. T. Pillinger, “A Carbon and Nitrogen Isotope Study of Diamond from Primitive Chondrites,” Met. Planet. Sci 31, 343–355 (1996).CrossRefGoogle Scholar
  14. 14.
    D. D. Clayton, B. S. Meyer, C. I. Sanderson, S. S. Russell, C. T. Pillinger, “C and N Isotopes in Type II Supernova Diamonds,” Astrophys. J. 447, 894–905 (1995).CrossRefGoogle Scholar
  15. 15.
    A. V. Fisenko and L. F. Semjonova, “Populations of Nanodiamond Grains in Meteorites from the Data on Isotopic Composition and Content of Nitrogen,” Solar Syst. Res. 40(6), 485–499 (2006).CrossRefGoogle Scholar
  16. 16.
    A. V. Fisenko and L. F. Semjonova, “Some Features of Noble Gases Release from the Grain-Size Fractions of the Orgueil CI Meteorite Nanodiamonds,” Lunar Planet. Sci. 39, 1078 (2008).Google Scholar
  17. 17.
    M. Tang, R. S. Lewis, E. Anders, et al., “Isotopic Anomalies of Ne, Xe and C in Meteorites. 1. Separation of Carriers by Density and Chemical Resistance,” Geochim. Cosmochim. Acta 52, 1221–1234 (1988).CrossRefGoogle Scholar
  18. 18.
    A. V. Fisenko, L. F. Semjonova, A. S. Aronin, V. F. Tatsii, Yu. I. Mitrokhin, and L. N. Bol’sheva, “Size Separation of Interstellar Diamonds,” Geochem. Int. 36(5), 467–470 (1998).Google Scholar
  19. 19.
    I. P. Wright and C. T. Pillinger, “C Isotopic Analysis of Small Samples by Use of Stepped-Heating Extraction and Static Mass Spectrometry,” in New Frontiers in Stable Isotopic Research: Laser Probes, Ion Probes and Small Sample Analysis, Ed. by W. S Shanks and R. E. Criss, US Geol. Surv. Bull., no. 1890, 9–34 (1989).Google Scholar
  20. 20.
    A. B. Verchovsky, A. V. Fisenko, L. F. Semjonova, and C. T. Pillinger, “Heterogeneous Distribution of Xenon-HL within Presolar Diamonds,” Meteoritics Planet. Sci 32(4), A131–A132 (1997).Google Scholar
  21. 21.
    V. L. Kuznetsov and Yu. V. Butenko, “Nanodiamond Graphitization and Properties of Onion-Like Carbon,” in Synthesis, Properties and Applications of Ultrananocrystalline Diamond, Ed. by D. M. Gruen et al., (Springer, Amsterdam, 2005), pp. 199–216 (2005).CrossRefGoogle Scholar
  22. 22.
    A. Braatz, F. Banhart, Th. Henning, and U. Ott, “Transformation of Meteoritic Diamonds to Graphitic Onions Upon Annealing,” Met. Planet. Sci. 34, A16–A17 (1999).Google Scholar
  23. 23.
    A. A. Shiryaev, A. V. Fisenko, I. I. Vlasov, L. F. Semjonova, P. Nagel, Schuppler S. “Spectroscopic Study of Impurities and Associated Defects in Nanodiamonds from Efremovka (CV3) and Orgueil (CI) Meteorites,” Geochim. Cosmochim. Acta 75, 3155–3165 (2011).CrossRefGoogle Scholar
  24. 24.
    A. V. Fisenko, S. S. Russell, R. D. Ash, L. F. Semjonova, A. B. Verchovsky, C. T. Pillinger, “Isotopic Composition of Carbon and Nitrogen in the Diamonds from the Unequilibrated Ordinary Chondrite Krymka LL3.0,” Lunar Planet. Sci. 23, 363–364 (1992).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. V. Fisenko
    • 1
  • A. B. Verchovsky
    • 2
  • L. F. Semjonova
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.PSSRIOpen UniversityMilton KeynesUK

Personalised recommendations