Skip to main content
Log in

Thermodynamic model of ore-forming processes in a submarine island-arc hydrothermal system

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

A thermodynamic model suggested for ore-forming processes in a hydrothermal system (HS) in an island arc is based on the technique suggested earlier in [1] for simulating ore-forming hydrothermal systems in mid-oceanic ridges. This technique make use of the principle of flow-through multistep reactor and encompasses (a) the region where hydrothermal solutions are generated when seawater interacts with rocks (descending convection branch); (b) the region where material is transported with the solution at decreasing pressure (feeder channel); and (c) the region where the ore material is deposited (orebody). Hydrothermal systems in island arcs exhibit the following distinctive features taken into account in the model: (1) the composition of the host crustal rocks (rocks of mafic-acid composition instead of basalt and serpentinite) and (2) possible significant involvement of magmatic gases in the feeding of the hydrothermal system. The naturally occurring prototype of the simulated system is the hydrothermal system in the caldera of a submarine volcano in an island arc. The model is simulated in a number of variants in which the hydrothermal fluid is exogenic (heated seawater convecting through hot volcanic rocks), magmatic, or mixed (magmatic plus exogenic) is involved.

The simulations were carried out using the HCh version 4.3 [2] program package for the multisystem H-O-K-Na-Ca-Mg-Fe-Al-Si-C-S-Cl-Cu-Zn-Pb-As-Sb-Ag-Au at temperatures of 25–370°C and pressures of 10–500 bar. The multisystem included 88 possible solid phases and aqueous solution with 95 species. The thermodynamic properties of compounds were calculated using the UNITHERM databank. The model is underlain by the principle of multiwave flow-through multistep reactor (MFTMR) with a starting rock/water (R/W) ratio of 1: 1. As progressively more solution portions passed through the rocks, the participation of fresh rock in the interaction accordingly diminished because the rock material was gradually exhausted in the system. The magmatic fluid had a composition selected based on data on fumaroles at Kudryavyi volcano [3] with a correction for the degassing pressure. The evolution of ore deposition was simulated in compliance with the scheme described in [4], which was implemented using the technology of “openness from above” [3]. The model was simulated with various compositions of the host rocks (basalts, andesites, dacites, and rhyolites) and the origin of the fluid (magmatic fluid alone, seawater alone, and variable proportions of both).

Our simulation results indicate that the metallogeny (relative enrichment in Pb, As, Sb, or Ag) of island-arc ore deposits is controlled by the abundances of metals in the host rocks predominant in the hydrothermal system. The mineralogy and geochemistry of ores generated in arc hydrothermal systems are predetermined by the effective transport of metalloids (S, As, and Sb) that have a high migration capacity in these systems. Magmatic gases introduced in the hydrothermal systems play dualistic roles in the ore-forming processes. If the hydrothermal fluid in a hydrothermal system is dominated by magmatic components, deposits of native sulfur are formed, and the precipitation of base metal is thereby suppressed because of the high acidity of the generated hydrothermal solutions. The involvement of magmatic gases in an amount of a few percent in a hydrothermal system enhances the overall oregenerating potential of the system in terms of sulfide ores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Grichuk, “Thermodynamic Models of Submarine Hydrothermal Systems,” Geochem. Int. 42(Suppl. 2), (2004).

  2. Yu. V. Shvarov, “HCh: New Potentialities for the Thermodynamic Simulation of Geochemical Systems Offered by Windows,” Geochem. Int. 46(8), 834–839 (2008).

    Article  Google Scholar 

  3. Y. A. Taran, J. W. Hedenquist, M. A. Korzhinsky, S. I. Tkachenko, K. I. Shmulovich, “Geochemistry of Magmatic Gases from Kudryavy Volcano, Iturup, Kuril Islands,” Geochim. Cosmochim. Acta 59(9), (1749–1761).

  4. D. V. Grichuk, E. E. Abramova, and A. V. Tutubalin, “A Thermodynamic Model of a Submarine Massive Sulfide Formation in a Convecting Hydrothermal System,” Geol. Ore Dep. 40 (1), 1–15 (1998).

    Google Scholar 

  5. InterRidge Vents Database. http://www.interridge.org/irvents/)

  6. Yu. A. Bogdanov, A. P. Lisitsyn, A. M. Sagalevich, and E. G. Gurvich, Hydrothermal Ocean Floor Ore Formation (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  7. M. Hannington, J. Jamieson, T. Monecke, S. Petersen, S. Beaulieu, “The Abundance of Seafloor Massive Sulfide Deposits,” GSA Data Repository 2011342, (2011).

  8. G. P. Glasby and K. Notsu, “Submarine Hydrothermal Mineralization in the Okinawa Trough, SW of Japan: An Overview,” Ore Geol. Rev. 23(3–4), 299–339 (2003).

    Article  Google Scholar 

  9. K. Iizasa, J. -I. Ishibashi, Y. Fujiwara, J. Hashimoto, Y. Horii, O. Ishizuka, S. Koyama, M. Yuasa, “Active Hydrothermal Field Associated with Black Smoker in the Myojin Knoll, Izu-Ogasawara Arc, Northwestern Pacific,” JAMSTEC J. Deep Sea Res., No. 14, 223–236 (1999).

  10. K. Iizasa, M. Sasaki, K. Matsumoto, S. Shiokawa, M. Tanahashi, and On-Board Scientists, “A First Extensive Hydrothermal Field Associated with Kuroko-Type Deposit in a Silicic Submarine Caldera in a Nascent Rift Zone, Izu-Ogasawara (Bonin) Arc, Japan,” in Proceedings of Oceans’04 MTS/IEEE Techno-Ocean’ 04 Conference, Kobe, Japan, 2004 (Kobe, 2004), Vol. 2, 991–996.

  11. Nautilus News Release 25.11.2011 (http://www.nautilusminerals.com/s/Media-NewsReleases.asp?ReportID=492567)

  12. C. E. J. de Ronde, M. D. Hannington, P. Stoffers, I. C. Wright, R. G. Ditchburn, A. G. Reyes, E. T. Baker, G. J. Massoth, J. E. Lupton, S. L. Walker, R. R. Greene, C. W. R. Soong, J. Ishibashi, G. T. Lebon, C. J. Bray, and J. A. Resing, “Evolution of a Submarine Magmatic-Hydrothermal System: Brothers Volcano, Southern Kermadec Arc, New Zealand,” Econ. Geol. 100(6), 1097–1133 (2005).

    Article  Google Scholar 

  13. R. W. Embley, E. T. Baker, D. A. Butterfield, W. W., Jr., Chadwick, J. E. Lupton, J. A. Resing, C. E. J. de Ronde, K. Nakamura, V. Tunnicliffe, J. F. Dower, S. G. Merle, “Exploring Submarine Ring of Fire,” Oceanography 20(4), 68–79 (2007).

    Article  Google Scholar 

  14. E. T. Baker, R. W. Embley, S. L. Walker, J. A. Resing, J. E. Lupton, K. Nakamura, C. E. J. de Ronde, G. J. Massoth, “Hydrothermal Activity and Volcano Distribution along the Mariana Arc,” J. Geophys. Res. 113(B08), 09,16 (2008).

    Google Scholar 

  15. P. R. Craddock and W. Bach, “Insights to Magmatic-Hydrothermal Processes in the Manus Back-Arc Basin as Recorded by Anhydrite,” Geochim. Cosmochim. Acta 74(19), 5514–5536 (2010).

    Article  Google Scholar 

  16. C. E. J. de Ronde, G. J. Massoth, E. T. Baker, and J. E. Lupton, “Submarine Hydrothermal Venting Related to Volcanic Arcs,” in Giggenbach Memorial Volume, Ed. by S. F. Simmons and I. J. Graham, Soc. Econ. Geol., Sp. Publ. 10, 91–110 (2003).

  17. I. I. Smirnov, Plutonism and Neptunism in the Evolution of the Study of Mineral Deposits (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  18. S. G. Krasnov, Hydrotermal Activity and Sulfide Oreformation in the Ocean Doctoral Dissertation in Geologyand Mineralogy (VNIIOkeangeologiya, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  19. D. V. Grichuk, Thermodynamic Models of Submarine Hydrothermal Systems (Nauchnyi mir, Moscow, 2000) [in Russian].

    Google Scholar 

  20. K. Yang and S. D. Scott, “Possible Contribution of a Metal-Rich Magmatic Fluid to a Sea-Floor Hydrothermal System,” Nature 383(6599), 420–423 (1996).

    Article  Google Scholar 

  21. K. Yang and S. D. Scott, “Magmatic Degassing of Volatiles and Ore Metals into a Hydrothermal System on the Modern Sea Floor of the Eastern Manus Back-Arc Basin, Western Pacific,” Econ. Geol. 97(5), 1079–1100 (2002).

    Article  Google Scholar 

  22. K. Yang and S. D. Scott, “Vigorous Exsolution of Volatiles in the Magma Chamber Beneath a Hydrothermal System on the Modern Sea Floor of the Eastern Manus Back-Arc Basin, Western Pacific: Evidence from Melt Inclusions,” Econ. Geol. 100(6), 1085–1096 (2005).

    Article  Google Scholar 

  23. T. Gamo, K. Okamura, J. -L. Charlou, T. Urabe, J. -M. Auzende, J. Ishibashi, K. Shitashima, H. Chiba, R. A. Binns, K. Gena, K. Henry, O. Matsubayashi, R. Moss, Y. Nagaya, J. Naka, E. Ruellan, “Acidic and Sulfate-Rich Hydrothermal Fluids from the Manus Back-Arc Basin, Papua New Guinea,” Geology 25(2), 139–142 (1997).

    Article  Google Scholar 

  24. P. M. Herzig, M. D. Hannington, and A. J. Arribas, “Sulfur Isotopic Composition of Hydrothermal Precipitates from the Lau Back-Arc: Implication for Magmatic Contributions to Seafloor Hydrothermal Systems,” Miner. Deposita 33(3), 226–237 (1998).

    Article  Google Scholar 

  25. J. Seewald, E. Reeves, P. Saccocia, O. Rouxel, E. Walsh, R. Price, M. Tivey, W. Bach, M. Tivey, “and Scientific MGLN06MV. “Water-Rock Reaction, Substrate Composition, Magmatic Degassing, and Mixing as Major Factors Controlling Vent Fluid Compositions in Manus Basin Hydrothermal Systems,” Eos Trans. Am. Geophys. Union 87 (52), No. B34A-02 (2006).

    Google Scholar 

  26. D. A. Butterfield, K. K. Roe, S. A. Bolton, J. A. Baross, J. E. Lupton, M. D. Lilley, R. W. Embley, W. W. Chadwick, J. A. Resing, “Overview of Vent Fluid Chemistry from the Marianas Volcanic Arc,” Eos Trans. Am. Geophys. Union 85 (47), No. V44A-01 (2004).

    Google Scholar 

  27. K. Takai, T. Nakagawa, Y. Suzuki, H. Hirayama, A. Kosaka, U. Tsunogai, T. Gamo, K. H. Nealson, K. Horikoshi, “Geomicrobiological Exploration and Characterization of Novel Deep-Sea Hydrothermal Activities Accompanying with Extremely Acidic White Smokers and Elemental Sulfur Chimneys at the TOTO Caldera in the Mariana Volcanic Arc,” Eos Trans. Am. Geophys. Union 85(47), V54A–06 (2004).

    Google Scholar 

  28. C. E. J. de Ronde, G. J. Massoth, D. A. Butterfield, B.W. Christenson, J. Ishibashi, R. G. Ditchburn, M. D. Hannington, R. L. Brathwaite, J. E. Lupton, V. S. Kamenetsky, I. J. Graham, G. F. Zellmer, R. P. Dziak, R. W. Embley, V. M. Dekov, F. Munnik, J. Lahr, L. J. Evans, K. Takai, “Submarine Hydrothermal Activity and Gold-Rich Mineralization at Brothers Volcano, Kermadec Arc, New Zealand,” Miner. Deposita 46(5–6), 541–584 (2011).

    Article  Google Scholar 

  29. S. Petersen, P. M. Herzig, U. Schwarz-Schampera, M. D. Hannington, I. R. Jonasson, “Hydrothermal Precipitates Associated with Bimodal Volcanism in the Central Bransfield Strait, Antarctica,” Miner. Deposita 39(3), 358–379 (2004).

    Article  Google Scholar 

  30. A. B. Ronov, A. A. Yaroshevskii, and A. A. Migdisov, Chemical Structure of the Earth’s Crust and the Geochemical Balance of Major Elements, (Nauka, Moscow, 1990).

    Google Scholar 

  31. Guidebook on Geochemical Exploration of Mineral Resources Ed. by A. P. Solovov, A. Ya. Arkhipov, et al. (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  32. M. A. Korzhinskii, S. I. Tkachenko, R. F. Bulgakov, and K. I. Shmulovich, “Condensate Compositions and Native Metals in Sublimates of High-Temperature Gas Streams of Kudryavyi Volcano, Iturup Island, Kuril Islands,” Geochem. Int. 34(12), 1057–1064 (1996).

    Google Scholar 

  33. S. I. Tkachenko, Extended Abstracts of Candidate’s Dissertation in Geology and Mineralogy (IEM RAN, Chernogolovka, 1996) [in Russian].

    Google Scholar 

  34. T. P. Fischer, W. F. Giggenbach, Y. Sano, and S. N. Williams, “Fluxes and Sources of Volatiles Discharged from Kudryavy, a Subduction Zone Volcano, Kurile Islands,” Earth Planet. Sci. Lett. 160(1–2), 81–96 (1998).

    Article  Google Scholar 

  35. M. A. Yudovskaya, V. V. Distler, I. V. Chaplygin, A. V. Mokhov, N. V. Trubkin, S. A. Gorbacheva, “Gaseous Transport and Deposition of Gold in Magmatic Fluid: Evidence from the Active Kudryavy Volcano, Kurile Islands,” Miner. Deposita 40(8), 828–848 (2006).

    Article  Google Scholar 

  36. R. B. Symonds, M. H. Reed, and W. I. Rose, “Origin, Speciation and Fluxes of Trace Element Gases at Augustine Volcano, Alaska: Insights into Magma Degassing and Fumarolic Processes,” Geochim. Cosmochim. Acta 56(2), 633–657 (1992).

    Article  Google Scholar 

  37. R. B. Symonds and M. H. Reed, “Calculation of Multicomponent Chemical Equilibria in Gas-Solid-Liquid Systems: Calculation Methods, Thermochemical Data and Applications to Studies of High-Temperature Volcanic Gases with Examples from Mount St. Helens,” Am. J. Sci. 293(8), 758–864 (1993).

    Article  Google Scholar 

  38. Great Fissure Tolbachik Eruption. Kamchatka 1975–1976, Ed. by S. A. Fedotov (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  39. I. A. Menyailov, L. P. Nikitina, V. N. Shapar’, A. M. Rozhkov, A. Z. Miklishanskii, “Chemical Composition and Content of Metals in Gas Emanations from the Alaid Volcano Crater during 1981 Eruption,” Vulkanol. Seismol., No. 1, 26–31 (1986).

  40. L. P. Nikitina, I. A. Menyailov, V. N. Shapar’, and L. N. Gartseva, “Geochemistry and Analytical Chemistry of the Fumarole Gases of Ebeko Volcano, Paramushir Island,” Vulkanol. Seismol., No. 1, 62–72 (1989).

  41. R. B. Symonds, W. I. Rose, M. H. Reed, F. E. Lichte, D. L. Finnegan, “Volatilisation, Transport and Sublimation of Metallic Elements in High-Temperature Gases at Merapi Volcano, Indonesia,” Geochim. Cosmochim. Acta 51(8), 2083–2101 (1987).

    Article  Google Scholar 

  42. J. B. Gemmell, “Geochemistry of Metallic Trace Elements in Fumarolic Condensates from Nicaraguan and Costa Rican Volcanoes,” J. Volcanol. Geotherm. Res. 33 (1–3), 161–181 (1987).

    Google Scholar 

  43. I. A. Menyailov, L. P. Nikitina, V. N. Shapar, and V. P. Pilipenko, “Temperature Increase and Chemical Change of Fumarolic Gases at Momotombo Volcano, Nicaragua, in 1982–1985: Are These Indicators of a Possible Eruption?,” J. Geophys. Res. 91(B12), 12199–12214 (1986).

    Article  Google Scholar 

  44. J. P. Quisefit, J. P. Toutain, G. Bergametti, M. Javoy, B. Cheynet, A. Person, “Evolution versus Cooling of Gaseous Volcanic Emissions from Momotombo Volcano, Nicaragua: Thermochemical Model and Observations,” Geochim. Cosmochim. Acta 53(10), 2591–2608 (1989).

    Article  Google Scholar 

  45. K. L. von Damm, “Seafloor Hydrothermal Activity: Black Smoker Chemistry and Chimneys,” Ann. Rev. Earth Planet. Sci. Lett. 18, 173–204 (1990).

    Article  Google Scholar 

  46. P. J. Wallace and I. S. E. Carmichael, “S Speciation in Submarine Basaltic Glasses as Determined by Measurements of SKα X-Ray Wavelength Shifts,” Am. Mineral. 79(1/2), 161–167 (1994).

    Google Scholar 

  47. D.-Y. Peng and D. B. Robinson, “A New Two-Constant Equation of State,” Industr. Eng. Chem. Fundam. 15(1), 59–64 (1976).

    Article  Google Scholar 

  48. R. Stryjek and J. H. Vera, “PRSV2: A Cubic Equation of State for Accurate Vapor-Liquid Equilibria Calculations,” Can. J. Chem. Engin. 64(10), 820–826 (1986).

    Article  Google Scholar 

  49. K. Nilsson and C. L. Peach, “Sulfur Speciation, Oxidation State, and Sulfur Concentration in Backarc Magmas,” Geochim. Cosmochim. Acta 57(15), 3807–3813 (1993).

    Article  Google Scholar 

  50. N. N. Akinfiev and A. V. Zotov, “Thermodynamic Description of Chloride, Hydrosulfide, and Hydroxo Complexes of Ag(I), Cu(I), and Au(I) at Temperatures of 25–500°C and Pressures of 1-2000 bars,” Geochem. Int. 39(10), 990–1006 (2001).

    Google Scholar 

  51. W. Liu and D. C. McPhail, “Thermodynamic Properties of Copper Chloride Complexes and Copper Transport in Magmatic-Hydrothermal Solutions,” Chem. Geol. 221(1–2), 21–39 (2005).

    Article  Google Scholar 

  52. G. S. Pokrovski, S. Kara, and J. Roux, “Stability and Solubility of Arsenopyrite, FeAsS, in Crustaline Fluids,” Geochim. Cosmochim. Acta 66(13), 2361–2378 (2002).

    Article  Google Scholar 

  53. A. V. Zotov, N. D. Shikina, and N. N. Akinfiev, “Thermodynamic Properties of the Sb(III) Hydroxide Complex Sb(OH)3(Aq) at Hydrothermal Conditions,” Geochim. Cosmochim. Acta 67 (10) (1821–1836).

  54. B. Bessinger and J. A. Apps, The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver (Lawrence Berkley National Laboratory, Berkeley, 2005).

    Google Scholar 

  55. Yu. V. Shvarov, “Algorithmization of the Numeric Equilibrium Modeling of Dynamic Geochemical Processes,” Geochem. Int. 37(6), 571–576 (1999).

    Google Scholar 

  56. Sulfide Deposits around the World, Ed. by V. I. Smirnov (Nedra, Moscow, 1979) [in Russian].

    Google Scholar 

  57. M. V. Borisov, Geochemical and Thermodynamic Models of Veined Hydrothermal Ore Formation (Nauchnyi mir, Moscow, 2000) [in Russian].

    Google Scholar 

  58. S. G. Krasnov and T. V. Stepanova, “The Formation of a Large Oceanic Massive Sulfide Ore Body (Middle Valley, Endeavor Ridge): Evidence from Geochemical Study of the Cores,” Geochem. Int. 34(9), 768–789 (1996).

    Google Scholar 

  59. G. A. Karpov, Modern Hydrothermal Springs and Mercury-Antimony-Arsenic Mineralization (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  60. J. D. Ridge, “Volcanic Exhalations and Ore Deposition in the Vicinity of the Seafloor,” Miner. Deposita 8(4), 332–348 (1973).

    Article  Google Scholar 

  61. G. P. Glasby, G. A. Cherkashov, G. M. Gavrilenko, V. A. Rashidov, I. B. Slovtsov, “Submarine Hydrothermal Activity and Mineralization on the Kurile and Western Aleutian Island Arcs, N.W. Pacific,” Mar. Geol. 231(1–4), 163–180 (2006).

    Article  Google Scholar 

  62. S. G. Krasnov, “Minimum Depths of the Formation of Massive Sulfide Ores on the Ocean Floor,” Dokl. Akad. Nauk SSSR 296(5), 1188–1191 (1987).

    Google Scholar 

  63. M. Hannington, P. Herzig, S. Scott, G. Thompson, P. Rona, “Comparative Mineralogy and Geochemistry of Gold-Bearing Sulfide Deposits on the Mid-Ocean Ridges,” Mar. Geol. 101(1/4), 217–248 (1991).

    Article  Google Scholar 

  64. P. Halbach, B. Pracejus, and A. Maerten, “Geology and Mineralogy of Massive Sulfide Ores from the Central Okinawa Trough, Japan,” Econ. Geol. 88(8), 2206–2221 (1993).

    Article  Google Scholar 

  65. M. Ito, T. Noguchi, J. Takada, and T. Oomori, “Geochemical Characteristics of Sulfide Chimneys Collected from Arc-Backarc Hydrothermal Fields at Western Pacific,” Geochim. Cosmochim. Acta 70(18), A281 (2006).

    Article  Google Scholar 

  66. A. G. Reyes, G. Massoth, C. de Ronde, and I. S. Wright, “Hydrothermal Mineralization in Arc-Type Submarine Volcanoes,” Geochim. Cosmochim. Acta 71(18), A528 (2007).

    Google Scholar 

  67. A. I. Krivtsov, O. V. Minina, A. G. Volchkov, E. E. Abramova, D. V. Grichuk, E. A. El’yanova, Sulfide Deposits. Series: Noble and Base Metal Deposits (TsNIGRI, Moscow, 2002) [in Russian].

    Google Scholar 

  68. P. M. Herzig, S. E. Humphris, D. J. Miller, and R. A. Zierenberg, Proc. Ocean Drill. Progr., Sci. Res. 158, (1998).

  69. N. C. White and J. W. Hedenquist, “Epithermal Environments and Style of Mineralization: Variations and Their Causes, and Guidelines for Exploration,” J. Geochem. Explor. 36(1–3), 445–474 (1990).

    Article  Google Scholar 

  70. K. Gena, T. Mizuta, D. Ishiyama, and T. Urabe, “Acid-Sulphate Type Alteration and Mineralization in the Desmos Caldera, Manus Back-Arc Basin, Papua New Guinea,” Resour. Geol. 51(1), 31–44 (2001).

    Article  Google Scholar 

  71. K. S. Lackschewitz, C. W. Devey, P. Stoffers, R. Botz, A. Eisenhauer, M. Kummetz, M. Schmidt, A. Singer, “Mineralogical, Geochemical and Isotopic Characteristics of Hydrothermal Alteration Processes in the Active, Submarine, Felsic-Hosted PACMANUS Field, Manus Basin, Papua New Guinea,” Geochim. Cosmochim. Acta 68(21), 4405–4427 (2004).

    Article  Google Scholar 

  72. R. W. Embley, W. W., Jr. Chadwick, E. T. Baker, D. A. Butterfield, J. A. Resing, C. E. J. de Ronde, V. Tunnicliffe, J. E. Lupton, S. K. Juniper, K. H. Rubin, R. J. Stern, G. T. Lebon, K. -I. Nakamura, S. G. Merle, J. R. Hein, D. A. Wiens, Y. Tamura, “Long-Term Eruptive Activity at a Submarine Arc Volcano,” Nature 441(7092), 494–497 (2006).

    Article  Google Scholar 

  73. D. Stuben, S. H. Bloomer, N. E. Taibi, Th. Neumann, V. Bendel, U. Puschel, A. Barone, A. Lange, W. Shiying, L. Cuizhong, Z. Deyu, “First Results of Study of Sulphur-Rich Hydrothermal Activity from an Island-Arc Environment: Esmeralda Bank in the Mariana Arc,” Mar. Geol. 103(1–3), 521–528 (1992).

    Article  Google Scholar 

  74. P. R. Craddock, Geochemical Tracers of Processes Affecting the Formation of Seafloor Hydrothermal Fluids and Deposits in the Manus Back-Arc Basin, Ph.D. Thesis, MIT/WHOI (2009).

  75. E. Reeves, Laboratory and Field-Based Investigations of Subsurface Geochemical Processes in Seafloor Hydrothermal Systems. Ph. D. Thesis, Massachusetts Institute of Technology (Oceanographic Institution, Woods Hole, 2010).

  76. M. Tivey, W. Bach, M. Tivey, J. Seewald, P. Craddock, O. Rouxel, D. Yoerger, C. Yeats, T. McConachy, M. Quigley, D. Vanko, and Science Party of MGLN06MV, “Investigating the Influence of Magmatic Volatile Input and Seawater Entrainment on Vent Deposit Morphology and Composition in Manus Basin (Back-Arc) Hydrothermal Systems,” Eos Trans. Am. Geophys. Union 87(52), B34A–01 (2006).

    Google Scholar 

  77. T. E. Jupp and A. Schultz, “The Physical Balances in Subseafloor Hydrothermal Convection Cells,” J. Geophys. Res. 109(B05101), 12 (2004).

    Google Scholar 

  78. P. Stoffers, T. J. Worthington, M. D. Hannington, U. Schwarz-Schampera, G. J. Massoth, L. J. Lundsten, “Submarine Volcanoes and High-Temperature Hydrothermal Venting on the Tonga Arc, SW Pacific,” Eos Trans. Am. Geophys. Union 86(52), V51C–1494 (2005).

    Google Scholar 

  79. P. Stoffers, T. J. Worthington, U. Schwarz-Schampera, M. D. Hannington, G. J. Massoth, R. Hekinian, M. Schmidt, L. J. Lundsten, L. J. Evans, R. Vaiomo’unga, T. Kerby, “Submarine Volcanoes and High-Temperature Hydrothermal Venting on the Tonga Arc, Southwest Pacific,” Geology 34(6), 453–456 (2006).

    Article  Google Scholar 

  80. H. Sigurdsson, S. Carey, M. Alexandri, G. Vougioukalakis, K. Croff, C. Roman, D. Sakellariou, C. Anagnostou, G. Rousakis, C. Ioakim, A. Gogou, D. Ballas, T. Misaridis, P. Nomikou, “High-Temperature Hydrothermal Vent Field of Kolumbo Submarine Volcano, Aegean Sea: Site of Active Kuroko-Type Mineralization,” Eos Trans. Am. Geophys. Union 87 (52), OS34A-03 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Grichuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grichuk, D.V. Thermodynamic model of ore-forming processes in a submarine island-arc hydrothermal system. Geochem. Int. 50, 1069–1100 (2012). https://doi.org/10.1134/S0016702912130046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702912130046

Keywords

Navigation