Skip to main content
Log in

Heat capacity and thermodynamic properties of GdPO4 in the temperature range 0–1600 K

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The heat capacity of gadolinium orthophosphate (GdPO4) measured in the temperature range 11.15–344.11 K by adiabatic calorimetry and available literature data were used to calculate its thermodynamic functions at 0–1600 K. At 298.15 K, these functions are as follows: C 0 p (298.15 K) = 101.85 ± 0.05 J K−1 mol−1, S 0(298.15 K) = 123.82 ± 0.18 J K−1 mol−1, H 0(298.15 K)–H 0(0) = 17.250 ± 0.012 kJ mol−1, and Φ 0(298.15 K) = 65.97 ± 0.18 J K−1 mol−1 The calculated Gibbs free energy of formation from the elements of GdPO4 is Δ f G 0 (298.15 K) = −1844.3 ± 4.7 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Boatner, M. M. Abraham, and B. S. Sales, “Lanthanide Orthophosphate Ceramics for the Disposal of Actinide-Contaminated Nuclear Wastes,” Inorg. Chim. Acta 94, 146–149 (1984).

    Article  Google Scholar 

  2. A. G. Betekhtin, Course of Mineralogy (Gosgeolizdat, Moscow, 1951) [in Russian].

    Google Scholar 

  3. I. A. Rat’kovskii, V.A. Ashuiko, V.P. Orlovskii, B.S. Khalikov, and G.I. Novikov, “Mass-Spectrometric Study of Orthophosphates of Yttrium-Group Rare-Earth Elements,” Dokl. Akad. Nauk 219, 1413–1415 (1974).

    Google Scholar 

  4. S. V. Ushakov, K. B. Helean, A. Navrotsky, and L. A. Boatner, “The Thermochemistry of Rare Earth Orthophosphates,” J. Mater. Res. 16, 2623–2633 (2001).

    Article  Google Scholar 

  5. C. Thiriet, R. J. M. Konings, P. Javorsky, N. Magnany, and F. Wastin, “The Low Temperature Heat Capacity of LaPO4 and GdPO4, the Thermodynamic Functions of the Monazite-Type LnPO4 Series,” J. Chem. Thermodyn. 37, 131–139 (2005).

    Article  Google Scholar 

  6. K. Popa, D. Sedmidubsky, O. Beneš, C. Thiriet, and R. J. M. Konings, “The High-Temperature Heat Capacity of LnPO4 (Ln = La,Ce,Gd) by Drop Calorimetry,” J. Chem. Thermodyn. 38, 825–829 (2006).

    Article  Google Scholar 

  7. K. S. Gavrichev, M. A. Ryumin, A. V. Tyurin, V. M. Gurevich, and L. N. Komissarova, “Refined Heat Capacity of LaPO4 in the Temperature Range 0–1600 K,” Thermochim. Acta 474, 47–51 (2008).

    Article  Google Scholar 

  8. K. S. Gavrichev, N. N. Smirnova, V. M. Gurevich, V. P. Danilov, A. V. Tyurin, M. A. Ryumin, and L. N. Komissarova, “Heat Capacity and Thermodynamic Functions of LuPO4 in the Range 0–320 K,” Thermochim. Acta 448, 63–65 (2006).

    Article  Google Scholar 

  9. D. F. Mullica, L. A. Grossie, and L. A. Boatner, “Coordination Geometry and Structural Determinations of SmPO4, EuPO4 and GdPO4,” Inorg. Chim. Acta 109, 105–110 (1985).

    Article  Google Scholar 

  10. J. Pepin and E. Vance, “Crystal Data for Rare Earth Orthophosphates of the Monazite Structure-Type,” J. Inorg. Nucl. Chem. 43, 2807–2809 (1981).

    Article  Google Scholar 

  11. Y.-H. Ni, J. M. Hughes, and A. M. Mariano, “Crystal Chemistry of the Monazite and Xenotime Structures,” Am. Mineral. 80, 21–26 (1995).

    Google Scholar 

  12. V. V. Malyshev, G. A. Mil’ner, E. L. Sorkin, and V. F. Shibakin, “Automatic Low-Temperature Calorimeter,” Pribory Tekhn. Eksperimenta, No. 6, 195 (1985).

  13. www.physics.nist.gov/PhysRefData/Compositions.

  14. V. M. Gurevich, O. L. Kuskov, K. S. Gavrichev, and A.V. Tyurin, “Heat Capacity and Thermodynamic Functions of Epsomite MgSO4 · 7H2O at 0–303 K,” Geochem. Int. 45, 206–209 (2007).

    Article  Google Scholar 

  15. V. M. Gurevich, V. E. Gorbunov, K. S. Gavrichev, and I. L. Khodakovskii, “A Calorimeter for Heat Capacity Measurements from 50 to 300 K: The Heat Capacities of Kogarkoite Na3SO4F(cr) at Low Temperatures,” Geochem. Int. 37, 367–377 (1999).

    Google Scholar 

  16. V. M. Gurevich, K. S. Gavrichev, V. E. Gorbunov, T. V. Danilova, and L. N. Golushina, “Low-Temperature Heat Capacity of Strontianite SrCO3(c),” Geochem. Int. 39, 676–682 (2001).

    Google Scholar 

  17. K. S. Gavrichev, M. A. Ryumin, A. V. Tyurin, V. M. Gurevich, and L. N. Komisarova, “The Heat Capacity and Thermodynamic Functions of EuPO4 over the Temperature Range 0–1600 K,” Russ. J. Phys. Chem. 83, 901–906 (2009).

    Article  Google Scholar 

  18. V. M. Gurevich, K. S. Gavrichev, V. E. Gorbunov, V. B. Polyakov, S. D. Mineev, and L. N. Golushina, “Thermodynamic Properties of Cassiterite SnO2(c) at 0–1500 K,” Geochem. Int. 42, 962–970 (2004).

    Google Scholar 

  19. Thermal Constants of Substances, Ed. by V. P. Glushko (Moscow, 1965–1982). www.chem.msu.ru.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Gurevich.

Additional information

Original Russian Text © V.M. Gurevich, M.A. Ryumin, A.V. Tyurin, L.N. Komissarova, 2012, published in Geokhimiya, 2012, Vol. 50, No. 8, pp. 784–793.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurevich, V.M., Ryumin, M.A., Tyurin, A.V. et al. Heat capacity and thermodynamic properties of GdPO4 in the temperature range 0–1600 K. Geochem. Int. 50, 702–710 (2012). https://doi.org/10.1134/S0016702912060031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702912060031

Keywords

Navigation