Skip to main content
Log in

Petrography and geochemistry of Eocene sandstones from eastern Pontides (NE TURKEY): Implications for source area weathering, provenance and tectonic setting

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Subaerial weathering level, source area and tectonic environments were interpreted by using petrographic and geochemical characteristics of Eocene age sandstones found in the eastern Pontides. The thickness of Eocene age clastic rocks in the eastern Pontides ranges from 195 to 400 m. Mineralogical components of sandstones were mainly quartz, feldspar, rock fragments, and opaque and accessory minerals. Depending on their matrix and mineralogical content, Eocene age sandstones are identified as arkosic arenite-lithic arenite and feldspathic wacke-lithic wacke. CIA (Chemical Index of Alteration) values observed in the Eocene age sandstones (43–55) suggest that the source terrain of the sandstones was not affected by intense chemical weathering. Low CIW/CIA (Chemical Index of Weathering/Chemical Index of Alteration) values of the sandstones studied here suggest only slightly decomposed material and having undergone little transport until final deposition. Zr/Hf, Th/Sc, La/Sc and CIA ratios are low and demonstrate a mafic source; on the other hand, high LREE/HREE ratios and a slightly negative Eu anomaly indicate a subordinate fclsic source. Modal mineralogical and SiO2/Al2O3 and K2O/Na2O and Th, Zr, Co, Sc of Eocene age sandstone contents indicate that they are probably magmatic arc originated and deposited in the back arc basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ç. Saydam Eker, “Gümüš hane Bölgesindeki Eosen Kumtaš larinin Sedimanter Petrografisi ve Levha Tektoniği Ölçekli Provenansina Bir Yakla im” Türkiye Jeoloji Bülteni 51(3), 131–148 (2008).

    Google Scholar 

  2. I. Ketin, Türkiye’nin Tektonik Birlikleri (MTA Publication, Ankara, 1966), no. 66.

    Google Scholar 

  3. A.M.C. Sengor and Y. Yilmaz, “Tethyan Evolution of Turkey: A Plate Tectonic Approach,” Tectonophysics 75, 181–241 (1981).

    Article  Google Scholar 

  4. S. Korkmaz, N. Tüysüz, and M. Er, “Stratigraphy of the Eastern Pontides, N-Turkey,” in Proceedings of Symposium on the Geology of the Pontides (Ankara, 1995).

  5. I. Gedik, M. Z. Kirmaci, and Ş. Çapinoğlu, “Doğu Pontidlerin Jeolojik Gelisimi,” in KTÜ Jeoloji Müh. Böl. 30. Yil Sempozyumu Bildirileri., (1996) pp. 654–677.

  6. A. I. Okay and Ö. Şahintürk, “Geology of the Eastern Pontides, Regional and Petroleum Geology of the Black Sea and Surrounding Region,” Am. Ass. Petrol. Geol. Mem. 68, 291–311 (1997).

    Google Scholar 

  7. I. H. Güven, A. K. Nalbantoğlu, and S. Takaoğlu, 1/100.000 Ölçekli Açinsama Nitelikli Türkiye Jeoloji Haritalari Serisi (MTA Genel Müdürlü ü, Ankara, 1993).

    Google Scholar 

  8. C. Saydam and S. Korkmaz, “Source Rock Characteristics and Hydrocarbon Potential of the Late Cretaceous Deposits in the Eastern Pontides, NE Turkey,” Energy Sources Part A, 30, 1141–1151 (2008).

    Article  Google Scholar 

  9. S. Tokel, Stratigraphical and Volcanic History of the Gumushane Region (NE Turkey) PhD Thesis, (Univ. College, London, 1972).

    Google Scholar 

  10. A. Musaoğlu, Bayburt-Maden-Kop (Gümüş hane) Yöresinin Jeolojisi ve Maden Potansiyeli (MTA Genel Müdürlüğü, Ankara, 1987).

    Google Scholar 

  11. L. J. Stunner and A. Basu, “The Effect of Grain Size on Detrital Modes: A Test of the Gazzi-Dickinson Point-Counting Method-Discussion,” J. Sediment. Petrol. 55, No. 4, 616–627, (1985).

    Google Scholar 

  12. P. F. Kerr, Optical Mineralogy (McGraw Hill, New York, 1959).

    Google Scholar 

  13. Y. Erkan, Magmatik Petrografi (University of Hacettepe, Engineering Faculty), no. 40.

  14. M. E. Tucker, Sedimentary Petrology (Blackwell Scientific Publ., Oxford, 1991).

    Google Scholar 

  15. D. M. Lewis and D. McConchie, Practical Sedimentology (Chapman and Hall, New York-London, 1994).

    Book  Google Scholar 

  16. A. H. Bouma, Sedimentology of Some Flysch Deposits, (Elsevier Publ. Co., Amsterdam, 1962).

    Google Scholar 

  17. H. M. Pantin, “Interaction between Velocity and Effective Density in Turbidity Currents: Phase Plane Analysis with Criteria for Auto Suspension,” Mar. Geol. 31, 59–99 (1979).

    Article  Google Scholar 

  18. R. D. Lowe, “Sediment Gravity Flows: II. Depositional Models with Special Reference to the Deposits of High-Density Turbidity, Currents,” J. Sediment. Petrol. 52(1), 279–297 (1982).

    Google Scholar 

  19. R. L. Dott, “Wacke, Greywacke and Matrix what Approach to Immature Sandstone Classification,” J. Sed. Petrol, 34, 625–632 (1964).

    Google Scholar 

  20. W. R. Dickinson and C. A. Suczek, “Plate Tectonics and Sandstone Composition,” Am. Ass. Petrol. Geol. Bull. 63, 2164–2182 (1979).

    Google Scholar 

  21. W. R. Dickinson, “Composition of Sandstones in Circum-Pacific Subduction Complexes and Fore-Arc Basins,” Am. Ass. Petrol. Geol. Bull. 66, 121–137 (1982).

    Google Scholar 

  22. W. R. Dickinson, L. S. Beard, and G. R. Breakendridge, “Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting,” Geol. Soc. Am. Bull. 94, 222–235 (1983).

    Article  Google Scholar 

  23. F. J. Pettijohn, P. E. Potter, and R. Siever, Sand and Sandstone, 2nd Edition (Springer, Berlin-HeidelbergNew York, 1987).

    Book  Google Scholar 

  24. R. A. Creaser, P. Erdemer, and R. A. Stevens, “Tectonic Affinity of Nisutlin and Avil Assemblages Strata from the Telsin Tectonic Zone, Northern Canadian Cordillera: Constraints from Neodymium Isotope and Geochemical Evidence,” Tectonics 16, 107–121 (1997).

    Article  Google Scholar 

  25. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell Scientific Publishing, Oxford, London, Edinburg, 1985).

    Google Scholar 

  26. S. Kutterolf, R. Diener, and U. Schachl, “Provenance of the Carboniferous Hochwipfel Formation (Karawanken Mountains, Austria/Slovenia)-Geo-chemistry versus Petrography,” Sediment. Geol. 203, 246–266 (2008).

    Article  Google Scholar 

  27. B. Bauluz, M. J. Mayayo, and C. Fernandez-Nieto, “Geochemistry of Precambrian and Paleozoic Siliciclastic Rocks from the Iberian Range (NE Spain): Implications for Source-Area Weathering, Sorting, Provenance, and Tectonic Setting,” Chem. Geol. 168, 135–150 (2000).

    Article  Google Scholar 

  28. H. W. Nesbitt, G. Markowics, and R. C. Price, “Chemical Processes Affecting Alkalis and Alkaline Earths during Continental Weathering,” Geochim. Cosmochim. Acta 44, 1659–1666 (1980).

    Article  Google Scholar 

  29. M. Schau and J. B. Henderson, “Archean Chemical Weathering at Three Localities on the Canadian Shield,” Precambrian Res. 20, 189–224, (1983).

    Article  Google Scholar 

  30. D. E. Grandstaff, M. J. Edelman, and R. W. Foster, “Chemistry and Mineralogy of Precambrian Paleosols at the Base of Dominion and Pongola Groups (Transvaal, South Africa),” Precambrian Res. 32, 97–131 (1986).

    Article  Google Scholar 

  31. T. Toulkeridis, N. Clauer, and A. Kroner, “Characterization, Provenance, and Tectonic Setting of Fig Tree Greywackes from the Archaean Barberton Greenstone Belt, South Africa,” Sediment. Geol. 124, 113–129 (1999).

    Article  Google Scholar 

  32. L. Harnison, “The CIW Index: a New Chemical Index of Weathering,” Sediment. Geol. 55, 319–322 (1988).

    Article  Google Scholar 

  33. H. W. Nesbitt and G. M. Young, “Early Proteozoic Climate and Plate Motions Inferred from Major Element Chemistry of Lutites,” Nature 299, 715–717, (1982).

    Article  Google Scholar 

  34. S. Gao and K. H. Wedepohl, “The Negative Eu Anomaly in Archean Sedimentary Rock: Implications for Decomposition, Age and Importance of their Granitic Sources,” Earth Planet. Sci. Lett. 133, 81–94 (1995).

    Article  Google Scholar 

  35. K. C. Condie, J. E. Mackie, and T. Reimer, “Petrology and Geochemistry of Early Precambrian Greywackes from the Fig Tree Group, South Africa,” Geol Soc. Am. Bull. 81, 2759–2776 (1970).

    Article  Google Scholar 

  36. D.J. Wronkijewichz and K.C. Condie, “Geochemistry and Provenance of Sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0 Ga-Old Continental Craton,” Geochim. Cosmochim. Acta 53, 1537–1549, (1989).

    Article  Google Scholar 

  37. Y. A. Balasov, A. V. Ronov, and A. A. Migdisov, “The Effect of Climate and Facies Environment in the Fractionation of the Rare Earths during Sedimentation,” Geochem. Int. 10, 951–969 (1964).

    Google Scholar 

  38. A. B. Ronov, Y. A. Balasov, and A. A. Migdisov, “Geochemistry of the Rare-Earths in the Sedimentary Cycle,” Geochem. Int. 4, 1–17 (1967).

    Google Scholar 

  39. E. Roaldest, “Rare-Earth Elements in Quaternary Clays of the Numedal Area, Southern Norway,” Lithos 6, 349–372 (1973).

    Article  Google Scholar 

  40. G. M. Varshal, M. M. Senyavin, and R. D. Yartseva, “Forms of Calcium and REE in River Waters,” in Recent Contributions to Geochemistry and Analytical Chemistry, 597–603 (1975).

  41. H. W. Nesbiti, “Mobility and Fractionation of REE during Weathering of Granodiorite,” Nature 279, 206–210 (1979).

    Article  Google Scholar 

  42. K. J. Cantrell and R. H. Byrne, “Rare Earth Element Complexation by Carbonate and Oxalate Ions,” Geochim. Cosmochim. Acta 51, 597–605 (1987).

    Article  Google Scholar 

  43. H. W. Nesbitt and G. M. Young, “Predictions of Some Weathering Trends of Plutonic and Volcanic Rocks based on Thermodynamic and Kinetic Considerations,” Geochim. Cosmochim. Acta 48, 1523–1534 (1984).

    Article  Google Scholar 

  44. A. Dokuz, and J. Tanyolu, “Geochemical Constraints of the Provenance, Mineral Sorting and Subaerial Weathering of Lower Jurassic and Upper Cretaceous Clastic Rocks of the Eastern Pontides, Yusufeli (Artvin), NE Turkey,” Turk. J. Earth Sci. 15,181–209 (2006).

    Google Scholar 

  45. D. J. Wronkijewichz and K. C. Condie, “Geochemistry of Archean Shales from the Witwatersrand Supergroup, South Africa: Source-Area Weathering and Provenance,” Geochim. Cosmochim. Acta 53, 1537–1549 (1987).

    Article  Google Scholar 

  46. R. L. Cullers, T. Baret, R. Carlson, and B. Robinson, “Rare Earth Element and Mineralogical Changes in Holocene Soil and Stream Sediment: a Case Study in the Wet Mountains, Colorado, USA,” Chem. Geol. 63, 275–295 (1987).

    Article  Google Scholar 

  47. M. R. Bhatia and K. A. W. Crook, “Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basin,” Contrib. Mineral. Petrol. 92, 182–193. Geol. 45, 97–113, (1986).

    Article  Google Scholar 

  48. D. J. Wronkijewichz and K. C. Condie, “Geochemistry and Mineralogy of Sediments from the Ventersdrop and Transvaal Supergroups, South Africa: Cratonic Evolution during the Early Proterozoic,” Geochim. Cosmochim. Acta 54, 343–354 (1990).

    Article  Google Scholar 

  49. H. D. Holland, The Chemistry of the Atmosphere and Oceans (Wiley, New York, 1978).

    Google Scholar 

  50. S. M. McLennan, S. R. Taylor, and A. Kroner, “Geochemical Evolution of Archean Shales from South Africa: I. The Swaziland and Pongola Supergroups,” Precambrian Res. 22, 93–124 (1983).

    Article  Google Scholar 

  51. R. L. Cullers and J. Graf, “Rare Earth Elements in Igneous Rocks of the Continental Crust: Intermediate and Silicic Rocks, Ore Petrogenesis,” in Rare-Earth Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1983), pp. 275–312.

    Google Scholar 

  52. S. M. McLennan and S. R. Taylor, “Sedimentary Rocks and Crustal Evolution: Tectonic Setting and Secular Trends,” J. Geol. 999, 1–21, (1991).

    Article  Google Scholar 

  53. H. Bahlburg, “The Geochemistry and Provenance of Ordovician Turbidites in the Argentinian Puna,” in The Proto-Andean Margin of Gondwana, Spec. Publ. Geol. Soc. London 142, 127–142 (1998).

    Google Scholar 

  54. S. M. McLennan, S. R. Taylor, and M. T. Mcculloch, “Geochemical and Nd-Sr Isotopic Composition of Deep-Sea Turbidites: Crustal Evolution and Plate Tectonic Associations,” Geochim. Cosmochim. Acta 54, 2015–2050 (1990).

    Article  Google Scholar 

  55. B. P. Roser, and R. J. Korsch, “Determination of Tectonic Setting of Sandstone-Mudstone Suites using SiO2 Content and K2O/Na2O Ratio,” J. Geol. 94, 635–694 (1986).

    Article  Google Scholar 

  56. J. B. Maynard, R. Valloni, and H. S. Yu, “Composition of Modern Deep-Sea Sands from Arc Related Basins,” in Trench-Forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Margins, Ed. by J. K. Legget, Geol. Soc. London, Spec. Publ. 10, 551–561 (1982).

  57. K. A. W. Crook, “Lithogenesis and Geotectonics: the Significance of Composiitonal Variations in Flysch Arenites (Greywackes),” in Modern and Ancient Geosynclinal Sedimentation, Ed. by R. H. Dott Jr. and R. H. Shaver, SEPM Spec. Publ. 19, 304–310 (1974).

  58. S. H. Adamia, M. Lordkipanidze, and G. Zakariadze, “Evolution of Active Continental Margin as Exemlified by the Alpine History of the Caucaus,” Amesterdam Tectonophysics 40, 183–199 (1977).

    Article  Google Scholar 

  59. S. Tokel, “Liyas Volkanitlerinin Kuzey Anadolu’daki Da ilimi ve Kuzey Tetis AdaYayi Sistemi Evriminin Aciklanmasindaki Onemi,” in Türkiye Jeoloji Kurultayi Abstracts (Ankara, 1983), pp. 42–43.

  60. A. M. C Sengor, Y. Yilmaz, and I. Ketin, “Remnants of a Pre-Late Jurassic Ocean in Northern: Fragments of a Permian Triassic Paleo-Tethys,” Geol. Soc. Am. Bull. 91, 599–609 (1980).

    Article  Google Scholar 

  61. J. F. Dewey, W. C. Pitman, and W. B. F. Ryan, “Plate Tectonics and Evolution of Alpine System,” Geol. Soc. Am. Bull., Boulder 84, 3137–3180, (1973).

    Article  Google Scholar 

  62. O. Betkas, “Kuzey Anadolu Fay Zonunun Erzincan—Tanyeri Bucaği Yöresindeki Jeolojik Özellikleri ve Yerel Ofiyolit Sorunlan,” in Karadeniz Teknik Universitesi, Yerbilimleri Dergisi, 32, 196,(Trabzon, 1981).

  63. O. Bektaş, “Tanyeri (Erzincan) Ofiyolit Karişiğina ait Trandjemitlerin Paleotektonik Konumu ve Kökenleri,” in Karadeniz Teknik Universitesi, Yerbilimleri Dergisi (Trabzon, 1982), Vol. 2, pp. 39–51.

  64. O. Bektaş, “Paleostress Trajectories and Polyphase Rifting in Arc-Back Arc of Eastern Pontides,” Bull. Miner. Res. Explor. Inst. Turkey, 103, 104, 1–15 (1986).

  65. O. Bektaş, S. Pelin, and S. Korkmaz, “Mantle Uprising in the Eastern Pontides Back-Arc Basin and the Concept of a Polygenetic Ophiolite,” in Ketin Symposium (1984), pp. 175–188. (in Turkey with English abstract).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cigdem Saydam Eker.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eker, C.S. Petrography and geochemistry of Eocene sandstones from eastern Pontides (NE TURKEY): Implications for source area weathering, provenance and tectonic setting. Geochem. Int. 50, 683–701 (2012). https://doi.org/10.1134/S001670291206002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670291206002X

Keywords

Navigation