Skip to main content
Log in

Humic acids in brown coals from the southern Russian Far East: General characteristics and interactions with precious metals

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Brown coals with high Au and PGE concentrations from six deposits in the southern Russian Far East were analyzed for elemental composition, acid-base properties, and the molecular-size distribution of humic acids (HA). The ash contents of the coals were determined to be negatively correlated with their Au concentrations, and the content of “organic Au” (which is chemically bound to humic substances, HS) reaches 95%. The most probable mode of Au occurrence in the brown coals is submicrometer-sized particles of elemental gold stabilized by HA. Quantum-mechanical calculations of interactions between Au(0) clusters with model HS fragments confirm that HS could be originally strongly chemically adsorbed on the surface of elemental gold particles. Different stability of colloids during centrifuging of alkali extracts of the gold-bearing brown coals was proved to be likely responsible for the selective separation of free HA and those bound with gold particles, and this can be used to develop a technology for gold recovery from coals without decomposing their organic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Gayer and D. Rickard, “Colloform Gold in Coal from Southern Wales,” Geology 22(1), 35–38 (1994).

    Article  Google Scholar 

  2. N. M. Ermolaev, N. A. Sozinov, V. A. Chinenov, N. I. Goryachkin, A. V. Nikiforov, “Modes of PGM Occurrence in Gold Ores from Black Shales,” Geokhimiya, No. 4, 524–532 (1995).

  3. R. W. Boyle, The Geochemistry of Gold and Its Deposits (Ottawa, 1979).

  4. L. L. Chyi, “The Distribution of Gold and Platinum in Bituminous Coals,” Econ. Geol. 77(6), 1592–1597 (1982).

    Article  Google Scholar 

  5. V. M. Ratynskii, M. Ya. Shpirt, S. A. Musyal, and M. A. Beloshapko, “Zoloto v uglyakh,” Khim. Tverd. Topl. 16, 83–85 (1982).

    Google Scholar 

  6. S. I. Arbuzov, L. P. Rikhvanov, L. P. Rikhvanov, S. G. Maslov, V. S. Arhipov, and A. M. Belyaeva, “Anomalous Gold Contents in Brown Coals and Peat in the South-Eastern Region of the Western-Siberian Platform,” Int. J. Coal Geol 68, 127–134 (2006).

    Article  Google Scholar 

  7. A. S. Radtke and B. J. Scheiner, “Studies on Hydrothermal Gold Deposition. I. Carlin Gold Deposit, Nevada: The Role of Carbonaceous Materials in Gold Deposition,” Econ. Geol. 65, 87–102 (1970).

    Article  Google Scholar 

  8. T. V. Shishkina and S. N. Dmitriev, “Gold in Natural Waters. Modes of Occurrence and Methods of Gold Accumulation (A Review),” Geokhimiya, No. 4, 496–506 (1991).

  9. R. J. Bowell, R. P. Foster, and A. P. Gize, “The Mobility of Gold in Tropical Rain Forest Soils,” Econ. Geol. 88, 999–1016 (1993).

    Article  Google Scholar 

  10. H. Kerndorff and M. Schnitzer, “Sorption of Metals on Humic Acid,” Geochim. Cosmochim. Acta 44, 1701–1708 (1980).

    Article  Google Scholar 

  11. E. M. Murphy and J. M. Zachara, “The Role of Sorbed Humic Substances on the Distribution of Organic and Inorganic Contaminants in Groundwater,” Geoderma 67, 103–124 (1995).

    Article  Google Scholar 

  12. V. I. Fedoseeva, N. F. Fedoseev, and G. V. Zvonareva, “Interaction of Some Gold Complexes with Humic and Fulvic Acids,” Geokhimiya, No. 9, 1386–1390 (1985).

  13. M. K. Baruah, P. Kotoky, and G. C. Borah, “Gold in High Sulphur Indian Coals,” Fuel 77(15), 1867–1868 (1998).

    Article  Google Scholar 

  14. N. A. Roslyakov, “Zonality of Gold Forms in the Surficial Environment as a Criterion for Buried Gold Deposits,” J. Geochem. Explor. 21, 333–340 (1984).

    Article  Google Scholar 

  15. F. W. Freise, “The Transportation of Gold by Organic Underground Solutions,” Econ. Geol. 26, 421–431 (1931).

    Article  Google Scholar 

  16. H. L. Ong and V. E. Swanson, “Natural Organic Acids in the Transportation, Deposition, and Concentration of Gold,” Quart. J. Colorado School Mines 64, 395–425 (1969).

    Google Scholar 

  17. M. L. Machesky, W. O. Andrade, and W. Rose, “Interactions of Gold (III) Chloride and Elemental Gold with Peat-Derived Humic Substances,” Chem. Geol. 102, 53–71 (1992).

    Article  Google Scholar 

  18. J. -P. Gatellier and J. -R. Disnar, “Kinetics and Mechanism of the Reduction of Au(III) to Au(0) by Sedimentary Organic Materials,” Org. Geochem. 16, 631–640 (1990).

    Article  Google Scholar 

  19. S. A. Wood, “The Role of Humic Substances in the Transport and Fixation of Metals of Economic Interest (Au, Pt, Pd, U, V),” Ore Geol. Rev. 11, 1–31 (1996).

    Article  Google Scholar 

  20. G. M. Varshal, T. K. Velyukhanova, I. Ya. Koshcheeva, N. N. Baranova, S. V. Kozerenko, A. Kh. Galuzinskaya, N. S. Safronova, L. N. Bannykh, “Accumulation of Noble Metals in Carbonaceous Matter of Rocks,” Geokhimiya, No. 6, 814–823 (1994).

  21. G. M. Varshal, T. K. Velyukhanova, and N. N. Baranova, “Interaction of Gold with Humic Matter of Natural Waters, Soils, and Rocks (Geochemical and Analytical Aspect),” Geokhimiya, No. 3, 316–327 (1990).

  22. G. M. Varshal, T. K. Velyukhanova, A. V. Korochantsev, K. I. Tobelko, A. Kh. Galuzinskaya, M. V. Akhmanova, “Relations between the Sorption Capacity of Carbonaceous Matter with Respect to Noble Metals and Its Structure,” Geokhimiya, No. 8, 1191–1198 (1995).

  23. E. I. Fisher and V. L. Fisher, “Role of Humic Acid in Gold Sorption by Marine Sediments,” Litol. Polezn. Iskop., No. 5, 77–82 (1984).

  24. N. N. Baranova, G. M. Varshal, and T. K. Velyukhanova, “Complexing Properties of Natural Organic Matters and their Role in the Genesis of Gold-Bearing Deposits,” Geokhimiya, No. 12, 1799–1803 (1991).

  25. R. J. Bowell, A. P. Gize, and R. P. Foster, “The Role of Fulvic-Acid in the Supergene Migration of Gold in Tropical Rain-Forest Soils,” Geochim. Cosmochim. Acta 57, 4179–4190 (1993).

    Article  Google Scholar 

  26. J. Cezikova, J. Kozler, L. Madronova, J. Novak, P. Janos, “Humic Acid from Coals of the North-Bohemian Coal Field II. Metal-Binding Capacity under Static Conditions,” Reactive & Functional Polymers 47, 111–118 (2001).

    Article  Google Scholar 

  27. L. P. Plyusnina and T. V. Kuz’mina, “Experimental Investigation of Platinum Concentration by Bitumen at 200–400 C and 1 kbar,” Geochem. Int. 37, 441–449 (1999).

    Google Scholar 

  28. V. V. Seredin, “The West Primorye Noble-Rare Metal Zone: A New Cenozoic Metallogenic Taxon in the Russian Far East,” Dokl. Earth Sci. 421, 745–750 (2008).

    Article  Google Scholar 

  29. V. V. Seredin, M. G. Dobrovol’skaya, and A. V. Mokhov, “Unique Polycomponent Mineralization in Breccia Bodies at the Pavlovsk Brown Coal Deposit,” Dokl. Earth Sci. 412, 113–116 (2007).

    Article  Google Scholar 

  30. A. V. Pestov, S. Yu. Bratskaya, A. B. Slobodyuk, V. A. Avramenko, Yu. G. Yatluk, “Thiocarbamoylchitosan-A New High Capacity and Selective Sorbent of Ions of Gold (III), Platinum (IV), and Palladium (II),” Izv. Akad. Nauk SSSR, Ser., No. 7, 1273–1276 (2010).

    Google Scholar 

  31. S. Bratskaya, A. Golikov, T. Lutsenko, O. Nesterova, V. Dudarchick, “Charge Characteristics of Humic and Fulvic Acids: Comparative Analysis by Colloid Titration and Potentiometric Titration with Continuous PK-Distribution Function Model,” Chemosphere 73(4), 557–563 (2008).

    Article  Google Scholar 

  32. I. V. Yao, E. A. Razvozzhaeva, V. V. Levitskii, O. N. Glushkova, I. V. Titkova, “Organic Matter and Behavior of Gold in Contact Metamorphism,” Geokhimiya, No. 10, 1516–1520 (1982).

  33. I. D. Fridman, E. M. Faizulina, N. D. Klyueva, and T. A. Tarasova, “Study of Interrelations between the Sorption Properties of Carbon-Bearing Gold Ores and the Chemical Structure of Carbonaceous Matter,” Zh. Prikl. Khim. 55(1), 7–11 (1982).

    Google Scholar 

  34. V. V. Seredin, “Distribution and Formation Conditions of Noble Metal Mineralization in Coal-Bearing Basins,” Geol. Ore Dep. 49(1), 1–30 (2007).

    Article  Google Scholar 

  35. J. Novak, J. Kozler, P. Janos, J. Cezicova, V. Tokarova, L. Madronova, “Humic Acids from Coals of the North-Bohemian Coal Field I. Preparation and Characterisation,” React. Funct. Polym 47, 101–109 (2001).

    Article  Google Scholar 

  36. I. V. Perminova, Doctoral Dissertation in Chemistry (Mosk. Gos. Univ., Moscow, 2000).

  37. J. Peuravuori and K. Pihlaja, “Molecular Size Distribution and Spectroscopic Properties of Aquatic Humic Substance,” Anal. Chim. Acta 337, 133–149 (1997).

    Article  Google Scholar 

  38. S. Yu. Bratskaya, A. S. Volk, V. V. Ivanov, A. Yu. Ustinov, N. N. Barinov, V. A. Avramenko, “A New Approach to Precious Metals Recovery from Brown Coals: Correlation of Recovery Efficacy with the Mechanism of Metal-Humic Interactions,” Geochim. Cosmochim. Acta 73, 3301–3310 (2009).

    Article  Google Scholar 

  39. N. N. Baranova, G. M. Varshal, and T. K. Velyukhanova, “Complexing Properties of Natural Organic Matters and their Role in the Genesis of Gold Deposits,” Geokhimiya, No. 12, 1799–1803 (1991).

  40. L. M. Laglera, M. Gonzalez-Davila, and J. M. Santana-Casiano, “Determination of Metallic Complexing Capacities of the Dissolved Organic Material in Seawater,” Scientia Marina 65 (2001).

  41. B. -K. Pong, H. I. Elim, J-X. Chong, W. Ji, B. L. Trout, J. -Y. Lee, “New Insights on the Nanoparticle Growth Mechanism in the Citrate Reduction of Gold (III) Salt: Formation of the Nanowire Intermediate and Its Nonlinear Optical Properties,” J. Phys. Chem. C 111, 6281–6287 (2007).

    Article  Google Scholar 

  42. X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, “Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate,” J. Am. Chem. Soc. 129, 13939–13948 (2007).

    Article  Google Scholar 

  43. N. G. Khlebtsov, “Determination of Size and Concentration of Gold Nanoparticles from Extinction Spectra,” Anal. Chem. 80, 6620–6625 (2008).

    Article  Google Scholar 

  44. A. D. Budaeva, E. V. Zoltoev, V. D. Tikhova, and N. V. Bodoev, “Interaction of Heavy Metals Ions with Ammonium Humates,” Russ. J. Appl. Chem. 79(6), 920–923 (2006).

    Article  Google Scholar 

  45. Z. Stryuk and G. Sposito, “Redox Properties of Standard Humic Acids,” Geoderma 102, 329–346 (2001).

    Article  Google Scholar 

  46. Ratasuk N., M. Nanny, “Characterization and Quantification of Reversible Redox Sites in Humic Substances,” Environ. Sci. Technol. 41, 7844–7850 (2007).

    Article  Google Scholar 

  47. R. Baigorri, J. Garcia-Mina, R. Aroca, and R. Alvarez-Puebla, “Optical Enhancing Properties of Anisotropic Gold Nanoplates Prepared with Different Fractions of a Natural Humic Substances,” Chem. Mater. 20, 1516–1521 (2008).

    Article  Google Scholar 

  48. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, “General Atomic and Molecular Electronic-Structure System,” J. Comput. Chem. 14, 1347–1363 (1993).

    Article  Google Scholar 

  49. I. Mayer, “Bond Order and Valence Indices: A Personal Account,” J. Comput. Chem. 28, 204–221 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Bratskaya.

Additional information

Original Russian Text © V.A. Avramenko, S.Yu. Bratskaya, A.S. Yakushevich, A.V. Voit, V.V. Ivanov, S.I. Ivannikov, 2012, published in Geokhimiya, 2012, Vol. 50, No. 5, pp. 483–493.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avramenko, V.A., Bratskaya, S.Y., Yakushevich, A.S. et al. Humic acids in brown coals from the southern Russian Far East: General characteristics and interactions with precious metals. Geochem. Int. 50, 437–446 (2012). https://doi.org/10.1134/S0016702912030032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702912030032

Keywords

Navigation