Skip to main content
Log in

Determination of point of zero charge of PILCS with single and mixed oxide pillars prepared from Tunisian-smectite

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Different pillared interlayer clays (PILCs) with single oxide pillars of Cr and Al and mixed oxide pillars of these metals have been prepared from a Tunisian purified smectite (Hp): Several Al/metal, OH/metal and metal/clay ratios were used in order to investigate the effect on the chemical and physical properties, specifically the point of zero charge of the synthesized pillared clays. These chromium pillared clays compounds at n meq (Nitrate) and at n meq (Chlorite) are noted pillared clay and pillared clays \(Hp(20,40,60)_{NO_3 } \) and Hp(20,40,60)Cl. The structure of the pillared materials are studied by XRD and cationic exchange capacity, the textural property are investigated by the specific surface area SBET. The acid-base chemistry “surface acidity” of these products was analysed by using acid-base potentiometric in order to determine the PZC of each sample. The resulting materials exhibited basal spacings in the range of 13.96–21.13 Å, with high surface areas (10.58–198 m2 g−1). Pillared clays prepared from Tunisian purified smectite showed an increase of basal spacings and surface areas. A relatively strong interaction between metal and aluminium in the pillars was observed. The samples are studied by acid-base potentiometric. This experimental method is used to determine the point of zero charge (PZC). The PZC values of the edge sites are 8.2 for Tunisian purified smectite and 6.8; 5.9; 5.19; 6.84; 5.86; 5.73; 6.78; 7.56 for the differents samples respectively: \(Hp(20,40,60meq)_{NO_3 } \) Hp(20,40,60meq)Cl; Hp-Cr/Al; Hp-Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zhuang and Y. Gui-Rui, “Effects of Surface Coatings on Electrochemical Properties and Contaminant Sorption of Clay Minerals,” Chemosphere 4, 619–628 (2002).

    Article  Google Scholar 

  2. K. Itami and H. Fujitani, “Charge Characteristics and Related Dispersion/Flocculation Behavior of Soil Colloids as the Cause of Turbidity,” J. Colloids Surf., 265A, 55–63 (2005).

    Google Scholar 

  3. K. Urabe, H. Sakurai, and Y. Izumi, “Pillared Synthetic Saponite as an Efficient Alkylation Catalyst,” J. Chem. Soc. Chem. Commun., No. 1074 (1986).

  4. M. L. Occelli, “New Routes to the Preparation of Pillared Montmorillonite catalysts,” Mol. Catal, 35, 377–389 (1986).

    Article  Google Scholar 

  5. S. J. Lin, S. J. Jong, and S. Cheng, “A New Method for Preparing Microporous Titanium Pillared Clays,” Microporous Mesoporous Mater. 1, 287–290 (1993).

    Google Scholar 

  6. D. H. Doff, N. H. J. Gangas, J. E. M. Allan, and J. M. D. Coey, “Preparation and Characterization of Iron Oxide Pillared Montmorillonite,” Clay Miner. 23, 367–377 (1988).

    Article  Google Scholar 

  7. C. Volzane, M. Cesio, R. M. Torres Sanchez, and E. Pereirra, “Hydroxide-Chromium Smectite,” Clays Clay Miner. 41, 702–706 (1993).

    Article  Google Scholar 

  8. A. Drljaca, J. R. Aderson, L. Spiccia, and T. W. Turney, Intercalation of Montmorillonite Clay with Individual Oligomeric Rhodium (III) Aqua Cations, Inorg. Chim. ACta 254, 219–224 (1997).

    Article  Google Scholar 

  9. L. Storaro, R. Ganzerla, M. Lenarda, R. Zanoni, A. H. Lopez, P. Olivera-pastor, and E. R. Caslellon, “Catalytic Behavior of Chromia and Chromium-Doped Alumina Pillared Clay Materials for Vapour Phase Deep Oxidation,” Mol. Catal., Ser. A. 115, 329–338 (1997).

    Article  Google Scholar 

  10. J. A. Ballantine, M. Davies, R. M. O’Neil, I. Patel, J. H. Purnell, M. Rayanakorn, and K. Williams, “Sheet Silicates: Broad Spectrum Catalysts for Organic Synthesis,” J. Mol. Catal. 26, 57–77 (1984).

    Article  Google Scholar 

  11. J. H. Ballantine, Purnell, and J.M. Thomas, “Organic Reactions in a Clay Microenvironment,” Clay Miner. 18, 347–356 (1983).

    Article  Google Scholar 

  12. M. Bradely and R. A. Kydd, “Ga13, A113, GaA112, and Chromium Pillared Montmorillonites: Acidity and Reactivity for Cumene Conversion,” J. Catal. 141, 239–249 (1993).

    Article  Google Scholar 

  13. N. Jagtap and V. Ramaswamy, “Oxidation of Aniline over Titania Pillared Montmorillonite Bentonites, Appl. Clay Sci. 33, 89–98 (2006).

    Article  Google Scholar 

  14. L. C. A. Oliveirq, R. M. Lago, J. D. Fabris, C. Solar, and K. Sapag, “Transition Metals Supported on Alpilcs as Catalysts for C6H5C1 Oxidation,” Brazil. J. Chem. Eng. 20, 45–50 (2003).

    Google Scholar 

  15. J. Sterte, “Hydrothermal Treatment of Hydroxycation Precursor Solutions, Catal. Today 2, 219–231 (1988).

    Article  Google Scholar 

  16. R. O. James and G. A. Parks, “Characterization of Aqueous Colloid by their Electrical Double-Layer and Intrinsic Surface Chemical Properties” Surf. Colloid Sci. 12, 119–216 (1982).

    Article  Google Scholar 

  17. G. Sposito, “The Surface Chemistry of Soils,” (Oxford University Press, Oxford, 1984).

    Google Scholar 

  18. H. Wanner, Y. Albinson, O. Karnland, E. Wicland, P. Wcrsin, and L. Chariot, “The Acid-Base Chemistry of Montmorillonite,” Radiochim. Acta. 66–67, 157–162 (1994).

    Google Scholar 

  19. M. J. Avena, R. Cabrol, and C. P. de Pauli, “Study of Physicochemilcal Properties of Pillared Montmorillonite, Acid-Base Potentiometric Titrations and Electrophoretic Measurements,” Clays Clay Miner. 38, 356–362 (1990).

    Article  Google Scholar 

  20. M. J. Avena and C. P. de Pauli, “Proton Adsorption and Electrokinetics of an Argentinean Montmorillonite,” J. Colloid Interface Sci. 202, 195–204 (1998).

    Article  Google Scholar 

  21. T. Missana and A. Adell, “On the Applicability of DLVO Theory to the Prediction of Clay Colloids Stability,” J. Colloid Interface Sci. 230, 150–156 (2000).

    Article  Google Scholar 

  22. K. Kraepiet, Keller and F.M.M. Morel, “A Model for Metal Adsorption on Clays,” J. Colloid Interface Sci. 210, 43–54 (1999).

    Article  Google Scholar 

  23. J. Ganor, J. Cama, and V. Metz, “Surface Protonation Data of Kaolinite-Reevaluation in Soils and Minerals via Traditional Methods and Detection of Electroacoustic Mobilit,” J. Colloid Interface Sci. 264, 67–75 (2003).

    Article  Google Scholar 

  24. Q. M. Appel and R. D. Lena, Rhue and E. Kenncllcy, “Point of Zero Charge Determination in Soils and Minerals via Traditional Methods and Detection of Electroacoustic Mobilit,” Geoderma 113, 77–93 (2003).

    Article  Google Scholar 

  25. A. Baccouche, E. Srasra, and M. E. Maaoui, Preparation of Na-Pl and Sodalite Octahydrate Zeolites from Interstratified Illite Smectite,” Appl. Clay Sci. 13, 255–273 (1998).

    Article  Google Scholar 

  26. V. Olphen, An Introduction to Clay Colloid Chemistry (Interscience, New York, 1963).

    Google Scholar 

  27. S. Arfaoui, E. Srasra, and N. Frini-Srasra, “Application of Clays to Treatment of Tannery Sewages,” Desalination 185, 419–426 (2005).

    Article  Google Scholar 

  28. F. Bergaya and M. Vayer, “CEC of Clays: Measurement by Adsorption of a Copper Ethylenediamine Complex,” Appl. Clay Sci. 12, 275–280 (1997).

    Article  Google Scholar 

  29. M. Roulia, Synthesis and Characterization of Novel Chromium Pillared Clays, Mater. Chem. Phys. 91, 281–288 (2005).

    Article  Google Scholar 

  30. G. Sposito, “On Points of Zero Charge,” Environ. Sci. Technol. 32, 2815–2819 (1998).

    Article  Google Scholar 

  31. B. L. Schroth and G. Sposito, G. Sposito, “Surface Charge Properties of Kaolinite,” Clays Clay Miner. 45, 85–91 (1997).

    Article  Google Scholar 

  32. J. S. Noh and J. A. Schwarz, “Estimation of the Point of Zero Charge of Simple Oxides by Mass Titration,” J. Colloid Interface Sci. 130, 157–164 (1989).

    Article  Google Scholar 

  33. K. Bourikas, C. Kordulis, and A. Leycourghiotis, “Differential Potentiometric Titration: Development of a Methodology for Determining the Point of Zero Charge of Metal (Hydr)oxides by One Titration Curve,” Environ. Sci. Technol. 39, 4100–4108 (2005).

    Article  Google Scholar 

  34. W. H. Hendershot and L. M. Lavkulich, “Effect of Sesquioxide Coatings on Surface Charge of Standard Mineral and Soil Samples,” Soil Sci. Soc. Am. J. 47, 1252–1260 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hamdi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arfaoui, S., Hamdi, N., Frini-Srasra, N. et al. Determination of point of zero charge of PILCS with single and mixed oxide pillars prepared from Tunisian-smectite. Geochem. Int. 50, 447–454 (2012). https://doi.org/10.1134/S0016702912030020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702912030020

Keywords

Navigation