Skip to main content
Log in

Organic geochemistry of Amynteo lignite deposit, northern Greece: a Multi-analytical approach

  • Published:
Geochemistry International Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Several lignite samples were collected from boreholes of the Amynteo opencast lignite mine, northern Greece. Organic geochemical characteristics were investigated with the help of various analytical techniques, comprising Gas Chromatography (GC) and Gas-chromatography-Mass Spectrometry (GC-MS), Fourier Transform Infrared Spectroscopy (FTIR), solid-state Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopy, petrographical measurements as well as determination of bulk parameters. In the low rank (Rr = 0.21%) Amynteo lignites, huminite is the most abundant maceral group, inertinite has relatively low percentages and liptinite concentrations are rather high. Carbon Preference Index (CPI) reveals the predominance of odd-numbered, long-chained aliphatic hydro-carbons, which is related to a higher terrestrial plant input. The Pr/Ph ratio suggests that reducing conditions were persistent during peatification. Gymnosperm biomarkers such as isoprimarane, abietane, phyllocladane and sandaracopimarane, as well as angiosperm indicators (lupane) and hopanoid compounds with bacterial origin were identified. Analyses of the aromatic fractions revealed the presence of naphthalene, alkyl benzenes and phenols, pyrene, cadalene, cadinane, fluoranthene and dibenzofurane. Based on the FTIR analysis, aliphatic and oxygen containing structures were prevailed over the aromatic moieties. The intensity of the mineral bands was preferentially increased in the FTIR spectra of insoluble material. According to NMR analysis, the aliphatic carbons (0–50 ppm) have higher proportions comparing to aromatic carbons (100–160 ppm). The aromaticity fraction is low (fa = 0.32), as expected for these low rank coals. The presence of free organic radicals and Fe3+ and Mn2+ paramagnetic ions was revealed by EPR. In summary, the combined application of complementary analytical techniques allowed a deep inside into the geochemical characteristics of Amynteo lignites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Solomon and R. M. Carangelo, “FTIR Analysis of Coal: 2. Aliphatic and Aromatic Hydrogen Concentration,” Fuel 45, 949–959 (1988).

    Article  Google Scholar 

  2. A. B. Pilawa and B. Wickowski, Trzebicka, “Numerical Analysis of EPR Spectra of Coal, Macerals and Extraction Products,” Radiat. Phys. Chem. 45, 899–908 (1995).

    Article  Google Scholar 

  3. S. Murata, M. Hosokawa, K. Kidena, M. Nomura, “Analysis of Oxygen Functional Groups in Brown Coals,” Fuel Process. Technol. 67, 231–243 (2000).

    Article  Google Scholar 

  4. R. F. Bechtel, I. Sachsenhofer, I. Kolcon, et al., “Organic Geochemistry of the Lower Miocene Oberdorf Lignite (Styrian Basin, Austria): Its Relation to Petrography, Palynology and the Palaeoenvironment,” Int. J. Coal Geol. 51, 31–57 (2002).

    Article  Google Scholar 

  5. M. Stefanova, D. R. Oros, A. Otto, and B. R. T. Simoneit, “Polar Aromatic biomarkers in the Miocene Maritza-East Lignite, Bulgaria,” Org. Geochem. 33, 1079–1091 (2002).

    Article  Google Scholar 

  6. M. Stefanova, K. Markova, S. Marinov, and B. R. T. Simoneit, “Biomarkers in the Fossils from the Miocene-Aged Chukurovo Lignite, Bulgaria: Sesqui- and Diterpenoids,” Bull. Geosci. 80, 93–97 (2005).

    Google Scholar 

  7. B. R. T. Simoneit, “A Review of Current Applications of Mass Spectrometry for Biomarker/Molecular Tracer Elucidations,” Mass Spectr. Rev. 24, 719–765 (2005).

    Article  Google Scholar 

  8. D. Životić, H. Wehner, O. Cvetkovi, et al., Petrological, Organic Geochemical and Geochemical Characteristics of Coal From the Soko Mine, Serbia,” Int. J. Coal Geol. 71, 527–541 (2008).

    Google Scholar 

  9. C. Papanicolaou, M. Dehmer, and M. Fowler, “Petrological and Organic Geochemical Characteristics of Coal Samples from Florina, Lava, Moschopotamos and Kalavryta Coal Fields, Greece,” Int. J. Coal Geol. 44, 267–292 (2000).

    Article  Google Scholar 

  10. A. Georgakopoulos, A. Iordanidis, and V. Kapina, “Study of Low Rank Greek Coals using FTIR Spectroscopy,” Energ. Source 25, 995–1005 (2003).

    Google Scholar 

  11. S. Kalaitzidis, A. Georgakopoulos, K. Christanis, and A. Iordanidis, “Early Coalification Features as Approached by Solid State 13C CP/MAS NMR Spectroscopy,” Geochem. Cosmochim. Acta 70, 947–959 (2006).

    Article  Google Scholar 

  12. E. Mavridou, P. Antoniadis, R. Littke, et al., “Liberation of Volatiles from Greek Lignites during Open System Non-Isothermal Pyrolysis,” Org. Geochem. 39, 977–984 (2008).

    Article  Google Scholar 

  13. S. B. Pavlides and D. M. Mountrakis, “Neotectonics of the Florina-Vegoritis-Ptolemais Neogene Basin (NW Greece): an Example of Extensional Tectonics of the Greater Aegean Area,” Ann. Geol. Pays Hellen 33, 311–327 (1986).

    Google Scholar 

  14. S. B. Pavlides and D. M. Mountrakis, “Extensional Tectonics of Northwestern Macedonia, Greece, Since the Late Miocene,” J. Struct. Geol. 9, 385–392 (1987).

    Article  Google Scholar 

  15. Deutsches Institut für Normung -DIN 51718 (1995) Testing of Solid Fuels — Determination of the Water Content and the Moisture of Analysis Sample.

  16. Deutsches Institut für Normung-DIN 51719 (1978) Testing of Solid Fuels — Determination of Ash Content.

  17. D. W. van Krevelen, Coal: Typology, Physics, Chemistry, Constitution (Elsevier, Amsterdam, 1993).

    Google Scholar 

  18. M. Mastalerz and R. M. Bustin, “Application of Reflectance Micro-FTIR Spectroscopy in Studying Coal Macerals: Comparison with Other Fourier Transform Infrared Techniques,” Fuel 74, 536–542 (1995).

    Article  Google Scholar 

  19. J. V. Ibarra, E. Muñoz, and R. Moliner, “FTIR Study of the Evolution of Coal Structure During the Coalification Process,” Org. Geochem. 24, 725–735 (1996).

    Article  Google Scholar 

  20. R. M. Mastalerz and R. M. Bustin, “Application of Reflectance Micro-Fourier Transform Infrared Analysis to the Study of Coal Macerals: an Example from the Late Jurassic to Early Cretaceous Coals of the Mist Mountain Formation, British Columbia, Canada,” Int. J. Coal Geol. 32, 55–67 (1996).

    Article  Google Scholar 

  21. A. Koch, G. Krzton, Finqueneisel, et al., “A Study of Carbonaceous Char Oxidation in Air by Semi-Quantitative FTIR Spectroscopy,” Fuel 77, 563–569 (1998).

    Article  Google Scholar 

  22. H. Radke and D. Willsch, H. Welte, “Preparative Hydrocarbon Group Type Determination by Automated Medium Pressure Liquid Chromatography,” Anal. Chem. 52, 406–411 (1980).

    Article  Google Scholar 

  23. L. Cabrera, H. W. Hagemann, A. Pickel, and A. Saez, “The Coal-Bearing, Cenozoic As Pontes Basin (Northwestern Spain): Geological Influence on Coal Characteristics,” Int. J. Coal Geo. 27, 201–226 (1995).

    Article  Google Scholar 

  24. R. F. Markic and R. F. Sachsenhofer, “Petrographic Composition and Depositional Environments of the Pliocene Velenje Lignite Seam (Slovenia),” Int. J. Coal Geol. 33, 229–254 (1997).

    Article  Google Scholar 

  25. G. H. Taylor, M. Teichmüller, and R. Littke, “Lithotypes and Microlithotypes,” in Organic Petrology, Ed. by G. H. Taylor, M. Teichmüller, A. Davis, C. F. K. Diessel, R. Littke, and P. Robert, (Gebrüder Bortntraeger, 1998), pp. 275–305.

  26. A. Iordanidis, Georgakopoulos, “Pliocene Lignites from Apofysis Mine, Amynteo Basin, Northwestern Greece: Petrographical Characteristics and Depositional Environment,” Int. J. Coal Geol. 54, 57–68 (2003).

    Article  Google Scholar 

  27. N. A. Öztaş and Y. Yürüm, “Pyrolysis of Turkish Zonguldak Bituminous Coal. Part 1. Effect of Mineral Matter,” Fuel 79, 1221–1227 (2000).

    Article  Google Scholar 

  28. S. Yaman, N. Karatepe, and S. Küçükbayrak, “Influence of Wet Oxidation on the Surface Area and the Porosity of Some lignites,” Fuel 79, 1017–1022 (2000)

    Article  Google Scholar 

  29. P. Conte, A. Piccolo, B. van Lagen, et al., “Quantitative Aspects of Solid State 13C-NMR Spectra of Humic Substances from Soils of Volcanic Systems,” Geoderma 80, 327–338 (1997).

    Article  Google Scholar 

  30. F. P. Miknis, M. Sullivan, V. J. Bartuska, and G. E. Maciel, “Cross-Polarization Magic Angle Spinning 13C NMR Spectra of Coals of Varying Rank,” Org. Geochem. 3, 19–28 (1981).

    Article  Google Scholar 

  31. A. M. Vassallo, M. A. Wilson, P. J. Colin, et al., “Structural Analysis of Geochemical Samples by Solid-State Nuclear Magnetic Resonance Spectroscopy; Role of Paramagnetic Material,” Anal. Chem. 59, 558–562 (1987).

    Article  Google Scholar 

  32. A. M. Wilson, NMR Techniques and Applications in Geochemistry and Soil Chemistry (Pergamon Press, Oxford, 1987).

    Google Scholar 

  33. C. E. Snape, D. E. Axelson, R. E. Botto, et al., “Quantitative Reliability of Aromaticity and Related Measurements on Coals by 13C NMR; a Debate,” Fuel 68, 547–560 (1989).

    Article  Google Scholar 

  34. H. Schmiers and R. Köpsel, “Macromolecular Structure of Brown Coal in Relationship to the Degradability by Microorganisms,” Fuel Process. Technol. 52, 109–114 (1997).

    Article  Google Scholar 

  35. W. H. Orem, S. G. Neuzil, H. E. Lerch, and C. B. Cecil, “Experimental Early-Stage Coalification of a Peat Sample and a Peatified Wood Sample from Indonesia,” Org. Geochem. 24, 111–125 (1996).

    Article  Google Scholar 

  36. C. Rumpel, H. Knicker, I. Kgel-Knabner, et al., “Types and Chemical Composition of Organic Matter in Reforested Lignite-Rich Mine Soils,” Geoderma 31, 123–142 (1998).

    Article  Google Scholar 

  37. X. Q. Lu, J. V. Hanna, and W. D. Johnson, “Source Indicators of Humic Substances: an Elemental Composition, Solid State 13C CP/MAS NMR and Py-GC/MS Study,” Appl. G|eochem. 15, 1019–1033 (2000).

    Article  Google Scholar 

  38. C. Rumpel, I. Kögel-Knabner, and H. Knicker, and R. F. Hüttl, “Composition and Distribution of Organic Matter in Physical Fractions of a Rehabilitated Mine Soil Rich in Lignite-Derived Carbon,” Geoderma 98, 177–192 (2000a).

    Article  Google Scholar 

  39. C. Rumpel, J. O. Skjemstad, H. Knicker, et al., “Techniques for the Differentiation of Carbon Types Present in Lignite-Rich Mine Soils,” Org. Geochem. 31, 543–551 (2000b).

    Article  Google Scholar 

  40. H. Kawashima, Y. Yamashita, and I. Saito, “Studies on Structural Changes of Coal Density-Separated Components during Pyrolysis by Means of Solid-State 13C NMR Spectra,” J. Anal. Appl. Pyrol. 53, 35–50 (2000).

    Article  Google Scholar 

  41. A. Iordanidis, B. van Lagen, A. Georgakopoulos, et al., “Semi-Quantitative Analysis of Lignites using Solid State 13C CP/MAS NMR Spectroscopy,” in Abstr. 5th User Meeting of the European Large-Scale Facilities for NMR, Frankfurt, Germany, 2001 (Frankfurt, 2001), pp. 86.

  42. A. Iordanidis, A. de Jager, and C. Dijkema, “13C CP/MAS NMR Study of green Lignites from Apofysis Mine, Northern Greece,” in Abstr. 21st Int. Meeting on Organic Geochemistry, European Association of Organic Geochemists, Krakow, Poland, 2003, (Krakow, 2003), pp. 332–333.

  43. F. Haghseresht, G. Q. Lu, and A. K. Whittaker, “Carbon Structure and Porosity of Carbonaceous Adsorbents in Relation to their Adsorption Properties,” Carbon 37, 1491–1497 (1999).

    Article  Google Scholar 

  44. S. D. Killops, R. M. K. Carlson, and K. E. Peters, “High-Temperature GC Evidence for the Early Formation of C40+ n-Alkanes in Coals,” Org, Geochem. 31, 589–597 (2000).

    Article  Google Scholar 

  45. M. Stefanova, S. P. Marinov, and C. Magnier, “Aliphatic Biomarkers from Miocene Lignites Desulphurization,” Fuel 78, 1395–1406 (1999).

    Article  Google Scholar 

  46. M. Stefanova, C. Magnier, and D. Velinova, “Biomarker Assemblage of Some Miocene-Aged Bulgarian Lignite Lithotypes,” Org. Geochem. 23, 1067–1084 (1995a).

    Article  Google Scholar 

  47. A. Iordanidis, Organic Geochemistry and Petrology of Amynteo Lignites (NW Greece) (Aristotle University of Thessaloniki, Greece, 2002).

    Google Scholar 

  48. E. Mavridou, P. Antoniadis, P. Khanaqa, et al., “Paleoenvironmental Interpretation of the Amynteon Ptolemaida Lignite Deposit in Northern Greece Based on its Petrographic Composition,” Int. J. Coal Geol. 56, 253–268 (2003).

    Article  Google Scholar 

  49. S. D. Killops and V. J. Killops, Introduction to Organic Geochemistry (Blackwell Publishing, Cornwall, 2006).

    Google Scholar 

  50. F. E. Casareo, S. C. George, B. D. Batts, and P. J. Conaghan, “The Effects of Varying Tissue Preservation on the Aliphatic Hydrocarbons within a High-Volatile Bituminous Coal,” Org. Geochem. 24, 785–800 (1996).

    Article  Google Scholar 

  51. A. C. M. L. Miranda, M. R. B. Loureiro, and J. N. Cardoso, “Aliphatic and Aromatic Hydrocarbons in Candiota Coal Samples: Novel Series of Bicyclic Compounds,” Org. Geochem. 30, 1027–1038 (1999).

    Article  Google Scholar 

  52. A. Bechtel, W. Gruber, R. F. Sachsenhofer, et al., “Depositional Environment of the Late Miocene Hausruck Lignite (Alpine Foreland Basin): Insights from Petrography, Organic Geochemistry, and Stable Carbon Isotopes,” Int. J. Coal Geol. 53, 153–180 (2003a).

    Article  Google Scholar 

  53. A. Bechtel, R. F. Sachsenhofer, M. Markic, et al., “Paleoenvironmental Implications from Biomarker and Stable Isotope Investigations on the Pliocene Velenje Lignite Seam (Slovenia),” Org. Geochem. 34, 1277–1298 (2003b).

    Article  Google Scholar 

  54. A. Bechtel, R. F. Sachsenhofer, A. Zdravkov et al., “Influence of Floral Assemblage, Facies and Diagenesis on Petrography and Organic Geochemistry of the Eocene Bourgas Coal and the Miocene Maritza-East Lignite (Bulgaria),” Org. Geochem. 36, 1498–1522 (2005).

    Article  Google Scholar 

  55. H. Amijaya, J. Schwarzbauer, and R. Littke, “Organic Geochemistry of the Lower Suban Coal Seam, South Sumatra Basin, Indonesia: Palaeoecological and Thermal Metamorphism Implications,” Org. Geochem. 37, 261–279 (2006).

    Article  Google Scholar 

  56. H. G. Dill and H. Wehner, “The Depositional Environment and Mineralogical and Chemical Compositions of High Ash Brown Coal Resting on Early Tertiary Saprock (Schirding Coal Basin, SE Germany),” Int. J. Coal Geol. 39, 301–328 (1999).

    Article  Google Scholar 

  57. E. Winkler, “Organic Geochemical Investigations of Brown Coal Lithotypes. A Contribution to Facies Analysis of Seam Banding in the Helmstedt Deposit,” Org. Geochem. 10, 617–624 (1986).

    Article  Google Scholar 

  58. C. J. Norgate and A. Boreham, J. Wilkins, “Changes in hydrocarbon maturity indices with coal rank and type, Buller Coalfield, New Zealand,” Org. Geochem. 30, 985–1010 (1999).

    Article  Google Scholar 

  59. B. M. Didyk, B. R. T. Simoneit, S. C. Brassell, and G. Eglinton, “Organic Geochemical Indicators of Palaeoenvironmental Conditions of Sedimentation,” Nature 272, 216–222 (1978).

    Article  Google Scholar 

  60. A. W. Hasiah and P. Abolins, “Organic Petrological and Organic Geochemical Characterization of the Tertiary Coal-Bearing Sequence of Batu Arang, Selangor, Malaysia,” J. Asian Earth Sci. 16, 351–367 (1998).

    Article  Google Scholar 

  61. U. Mann, S. Korkmaz, C. J. Boreham, et al., “Regional Geology, Depositional Environment and Maturity of Organic Matter of Early to Middle Jurassic Coals, Coaly Shales, Shales and Claystones from the Eastern Pontides, NE Turkey,” Int. J. Coal Geol. 37, 257–286 (1998).

    Article  Google Scholar 

  62. H. L. ten Haven, J. W. de Leeuw, J. Rullktter, and J. S. Sinninghe Damst, “Restricted Utility of the Pristane/Phytane Ratio as a Palaeoenvironmental Indicator,” Nature 330, 641–643 (1987).

    Article  Google Scholar 

  63. K. E. Peters and J. M. Modowan, The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments, (Prentice-Hall, New Jersey, 1993).

    Google Scholar 

  64. A. Vieth and H. Wilkes, “Deciphering Biodegradation Effects on Light Hydrocarbons in Crude Oils Using their Stable Carbon Isotopic Composition: A Case Study from the Gullfaks Oil Field, Offshore Norway,” Geochim. Cosmochim. Acta 70, 651–665 (2006).

    Article  Google Scholar 

  65. Y. Z. Sun, B. S. Wangand, and M. Y. Lin, “Maceral and Geochemical Characteristics of Coal Seam 1 and Oil SHale 1 in Fault-Controlled Huangzian Basin, China,” Org. Geochem. 29, 583–501 (1998).

    Article  Google Scholar 

  66. R. P. Philp, B. R. T. Simoneit, and T. D. Gilbert, “Diterpenoids in Crude Oils and Coals of South Eastern Australia,” in Advances in Organic Geochemistry, Ed. by M. Bjorøy et al., (Wileys, 1983), pp. 698–704.

  67. M. Stefanova, B. R. T. Simoneit, G. Stojanova, et al., “Composition of the Extract from a Carboniferous Bituminous Coal: 1. Bulk and Molecular Constitution,” Fuel 74, 768–778 (1995b).

    Article  Google Scholar 

  68. B. R. T. Simoneit, A. Otto, and V. Wilde, “Novel Phenolic Biomarker Triterpenoids of Fossil Laticifers in Eocene Brown Coal from Geiseltal, Germany,” Org. Geochem. 34, 121–129 (2003).

    Article  Google Scholar 

  69. J. Dehmer, “Petrological and Organic Geochemical Investigations of Recent Peats with Known Environments of Deposition,” Int. J. Coal Geol. 28, 111–138 (1995).

    Article  Google Scholar 

  70. A. Raymond, M. K. Phillips, J. A. Gennet, and P. A. Comet, “Palynology and Paleoecology of Lignites from the Manning Formation (Jackson Group) Outcrop in the Lake Somerville Spillway of East-Central Texas,” Int. J. Coal Geol. 34, 195–223 (1997).

    Article  Google Scholar 

  71. J. P. Clark and R. P. Philp, “Geochemical Characterization of Evaporite and Carbonate Depositional Environments and Correlation of Associated Crude Oils in the Black Creek Basin, Alberta,” Can. Petrol. Geol. Bull. 37, 401–416 (1989).

    Google Scholar 

  72. M. A. Kruge, Determination of Thermal Maturity and Organic MAtter Type by Principal Components Analysis of the Distributions of Polycyclic Aromatic Compounds,” Int. J. Coal Geol. 43, 27–51 (2000).

    Article  Google Scholar 

  73. P. G. Hatcher and D. J. Clifford, “The Organic Geochemistry of Coal: from Plant Materials to Coal,” Org. Geochem. 27, 251–274 (1997).

    Article  Google Scholar 

  74. T. Kuder, M. A. Kruge, J. C. Shearer, and S. L. Miller, “Environmental and botanical ccontrols on peatification—a Comparative Study of Two New Zealand Restiad Bogs using Py-GC/MS, Petrography and Fungal Analysis,” Int. J. Coal Geol. 37, 3–27 (1998).

    Article  Google Scholar 

  75. B. A. Stankiewicz, A. Kruge, and M. Mastalerz, “A Geochemical Study of Macerals from a Miocene Lignite and an Eocene Bituminous Coal, Indonesia,” Org. Geochem. 24, 531–545 (1996).

    Article  Google Scholar 

  76. M. Misz, M. Fabianska, and S. Ćmiel “Organic Components in Thermally Altered Coal Waste: Preliminary Petrographic and Geochemical Investigations,” Int. J. Coal Geol. 71, 405–424 (2007).

    Article  Google Scholar 

  77. W. Kalkreuth, C. L. Riediger, D. J. McIntyre, et al., “Petrological, Palynological and Geochemical Characteristics of Eureka Sound Group Coals (Stenkul Fiord, Southern Ellesmere Island, Arctic Canada),” Int. J. Coal Geol. 30, 151–182 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Iordanidis.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iordanidis, A., Schwarzbauer, J., Georgakopoulos, A. et al. Organic geochemistry of Amynteo lignite deposit, northern Greece: a Multi-analytical approach. Geochem. Int. 50, 159–178 (2012). https://doi.org/10.1134/S0016702912020036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702912020036

Keywords

Navigation