Skip to main content
Log in

The Omolon pallasite: Chemical composition, mineralogy, and genetic implications

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The chemical composition of mineral components of the Omolon pallasite was determined by neutron-activation. Six types of olivines were distinguished. Four types differ in the abundance of Co relative to Ni of CI chondrites. The fifth and sixth types were distinguished on the basis of REE distribution in them. Both last types are variably enriched in LREE relative to CI chondrites. In terms of Ca content relative to CI chondrite, these six types are subdivided into two groups: low-calcium and high-calcium. The difference in Ca contents can be caused by different cooling rate of the precursor of these olivines. The distribution pattern of siderophile elements in the pallasite metal indicates that a metallic phase experienced chemical transformations since the time of its formation. The analysis of chemical composition of accessory minerals showed that: (1) HREE are accumulated in tridymite; (2) troilite and daubreelite were formed under different temperature conditions; (3) magnetite is the mineral of the outer zone of melting crust. Four fragments with anomalous contents of lithophile elements were found in the pallasites and studied. The unusual chemical composition of phases and high degree of HREE fractionation in the fragments suggest their formation at high temperatures at the early stage of the Solar system evolution. It is assumed that the Omolon pallasite was formed as impact-brecciated mixture of the asteroid core (with composition close to IIIAB group of iron meteorites) and mantle olivine from incompletely differentiated parent body of chondrite composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Vinogradov, “Meteorirtic Matter,” Geokhimiya, No. 11, 1275-1312 (1965).

  2. J. T. Wasson and B. G. Choi, “Main-Group Pallasites: Chemical Composition, Relationship to III AB Irons, and Origin,” Geochim. Cosmochim. Acta 67, 3079–3096 (2003).

    Article  Google Scholar 

  3. R. N. Clayton and T. K. Mayeda, “Oxygen-Isotope Studies of Achondrites,” Geochim. Cosmochim. Acta 60, 1999–2017 (1996).

    Article  Google Scholar 

  4. D. W. Mittlefehldt, “The Composition of Mesosiderite Olivine Clasts and Implications for the Origin of Pallasites,” Earth Planet. Sci. Lett. 51(1), 29–40 (1980).

    Article  Google Scholar 

  5. D. J. Malvin, J. T. Wasson, R. N. Clayton, and T. K. Mayeda, “Bocainva—a Silicate Inclusion Bearing Iron Meteorite Related To the Eagle Station Pallasites,” Meteoritics 20(2), 259–273 (1985).

    Google Scholar 

  6. G. Kurat, “Primitive Meteorites: An Attempt toward Unification,” Philos. Trans. R. Soc. London A325, 459–482 (1988).

    Article  Google Scholar 

  7. A. M. Davis and E. J. Olsen, “Phosphates in the Pallasite Meteorites As Probes of Mantle Processes in Small Planetary Bodies,” Nature 353, 637–640 (1991).

    Article  Google Scholar 

  8. W. Wahl, “The Pallasite Problem,” Geochim. Cosmochim. Acta 29(3), 177–181 (1965).

    Article  Google Scholar 

  9. H. C. Urey, “Diamonds, Meteorites, and the Origin the Solar System,” Astrophys. J. 124, 623–637 (1956).

    Article  Google Scholar 

  10. E. R. D. Scott, “Geochemical Relationships Between Some Pallasites and Iron Meteorites,” Mineral. Mag. 41 (318), 265–272 (1977).

    Google Scholar 

  11. R. T. Dodd, Meteorites: A Petrologic-Chemical Synthesis (Cambridge Univ. Press, Cambridge, 1981).

    Google Scholar 

  12. P. R. Buseck, “Pallasite Meteorites—Mineralogy, Petrology and Geochemistry,” Geochim. Cosmochim. Acta 41(6), 711–740 (1977).

    Article  Google Scholar 

  13. E. R. D. Scott, “Pallasites—Metal Composition, Classification and Relationships with Iron Meteorites,” Geochim. Cosmochim. Acta 41(3), 349 (1977).

    Article  Google Scholar 

  14. D. W. Mittlefehldt, T. J. Mc Coy, C. A. Goodrich, and A. Kracher, Non-Chondritic Meteorites from Asteroidal Bodies, in Planetary Materials, Ed. by J. J. Papike, (Mineral. Soc. Am., Washington, 1998).

    Google Scholar 

  15. E. Asphaug, C. B. Agnor, and Q. Williams, “Hut and — Run Planetary Collisions,” Nature 438, 155–160 (2006).

    Article  Google Scholar 

  16. T. Tomiyama, G. R. Huss, K. Nagashima, and A. N. Krot, “Ion Microprobe Analysis of 53Mn-53Cr Systematics in Pallasite Meteorite,” Proc. 38th Lunar Planet. Sci. Conf. 38, 2007.

  17. J. V. Bondar, I. I. Kashkarov, and V. P. Perelygin, “Tracks and Dislocations in Silicate Minerals of the Omolon Pallasite,” Proc. 33th Lunar Planet. Sci. Conf. 33, #1067 (2002).

    Google Scholar 

  18. A. A. Plyashkevich, H. E. Savva, and G. F. Pavlov, “Omolon—the First Pallasite of Northeast USSR,” Dokl. Akad. Nauk SSSR 318(1), 197–202 (1991).

    Google Scholar 

  19. A. Desrousseaux, J. C. Doukhan, H. Leroux, and J.C. Van Duysen, “An Analytical Electron Microscope Investigation of Some Pallasites,” Phys. Earth Planet. Inter. 103, 101–115 (1997).

    Article  Google Scholar 

  20. J. V. Bondar, V. P. Perelygin, and R. I. Petrova, “Fossil Track Studies of the Omolon Pallasite Crystals,” Radiation Meas. 28, 337–340 (1997).

    Article  Google Scholar 

  21. Yu. A. Shukolyukov, Yu. V. Klimenko, Yu. A. Kolyasnikov, and M. V. Koloskov, “Noble Gases in the Olivine from the Omolon Pallasite,” Geokhimiya, No. 7, 923–938 (1992).

  22. V. A. Bronshten, V. E. Zharov, and R. L. Khotinok, “Atmospheric Trajectory and Orbit of the Omolon Meteorite,” Meteorit. Planet. Sci. 34, A131–A135 (1999).

    Article  Google Scholar 

  23. G. M. Kolesov, N. A. Shubina, and A. Yu. Lyul, “Optimizing Instrumental Neutron Activation Analysis of Extraterrestrial Materials: Fragments of Lunar Rocks, Meteorites, Chondrules, and Ultrarefractory Inclusions,” J. Anal. Chem. 56, 1022–1028 (2001).

    Article  Google Scholar 

  24. N. A. Shubina and G. M. Kolesov, “Decreasing the Detection Limits for the Neutron Activation Analysis of Trace Elements in Artificial and Natural Materials by Subtracting the Radionuclide Spectra of Matrix Elements from the Total Sample Spectrum,” J. Anal. Chem. 58, 875–881 (2003).

    Article  Google Scholar 

  25. E. Anders and N. Grevesse, “Abundances of the Elements: Meteoritic and Solar,” Geochim. Cosmochim. Acta 53(1), 197–214 (1989).

    Article  Google Scholar 

  26. V. V. Sharygin, S. V. Kovyazin, and N. M. Podgornykh, “Mineralogy of Olivine Hosted Inclusions from the Omolon Pallasite,” Proc. Lunar Planet. Sci. Conf. 37, #1235 (2006).

    Google Scholar 

  27. I. L. Gooding and R. Keil, “Relative Abundances of Chondrule Primary Textural Types in Ordinary Chondrites and Their Bearing on Conditions of Chondrule Formation,” Meteoritics 16(1), 17–43 (1981).

    Google Scholar 

  28. A. W. R. Bevan and H. J. Axon, “Metallography and Thermal History of the Tieschitz Unequilibrated Meteorite-Metallic Chondrules and the Origin of Polycrystalline Taenite,” Earth Planet. Sci. Lett. 47(353–360), 1980.

    Google Scholar 

  29. H. Nagahara, “Ni-Fe Metals in the Type 3 Ordinary Chondrites,” Nem. Nat. Inst. Polar. Res. Sp. Iss. 25, 86–96 (1982).

    Google Scholar 

  30. G. J. Gonsolmango and M. Drake, “Composition and Evolution of the Eucrite Parent Body: Evidence from Rare Earth Elements,” Geochim. Cosmochim. Acta 41(9), 1271–1282 (1977).

    Article  Google Scholar 

  31. D. B. Curtis, and R. A. Schmitt, “The Petrogenesis of L-6 Chondrites: Insights from the Chemistry of Minerals,” Geochim. Cosmochim. Acta 43(7), 1001–1103 (1979).

    Article  Google Scholar 

  32. A. K. Lavrukhina, A. Yu. Lyul, G. M. Kolesov, and G. V. Baryshnikova, “Features of Element Composition of Chondrules of the Okhansk H4 and Saratov L3–4 Ordinary Chondrites and Kainsaz CO3 Carbonaceous Chondrite,” Geokhimiya, no. 1, 44–63 (1987).

  33. A. K. Lavrukhina, “Distribution of Na, K, and Rare-Earth Elements in Chondrules,” Geokhimiya, No. 9, 1231-1245 (1989).

  34. J. V. Smith, “X-Ray Emission Microanalysis of Rock-Forming Minerals. II. Olivines,” J. Geol. 74(1), 1–16 (1966).

    Article  Google Scholar 

  35. R. T. Dodd, “Minor Element Abundances in Olivines of the Sharps (H-3) Chondrite,” Contrib. Mineral. Petrol. 42(2), 159–167 (1973).

    Article  Google Scholar 

  36. R. D. Warner and W. C. Luth, “Two Phase Data for the Join Monticellite (CaMgSiO4)-Forsterite (Mg2SiO4): Experimental Result and Numerical Analysis,” Am. Mineral. 58(11–12), 998 (1973).

    Google Scholar 

  37. Y. C. Stormer, “Calcium Zoning and Relationship to Silica Activity and Pressure,” Geochim. Cosmochim. Acta 37(8), 1815–1821 (1973).

    Article  Google Scholar 

  38. P. R. Buseck and J. I. Goldstein, “Olivine Compositions and Cooling Rates of Pallasitic Meteorites,” Geol. Soc. Am. Bull. 80, 2141–2158 (1969).

    Article  Google Scholar 

  39. J. V. Smith, “Minor Elements in Apollo 11 and 12 Olivine and Plagioclase,” Proc. 2nd Lunar Sci. Conf. Geochim. Cosmochim. Acta, No. 2 (Suppl.), 141 (1971).

  40. N. V. Sobolev, Deep-Seated Inclusions in Kimberlites and the Problem of Composition of Upper Mantle (Nauka, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  41. R. T. Dodd, “Calcium in Chondrite Olivine,” Geol. Soc. Am., Mem. 132, 651–560 (1972).

    Google Scholar 

  42. E. R. D. Scott, “Chemical Fractionation in Iron Meteorites and Its Interpretation,” Geochim. Cosmochim. Acta 36(11), 1205–1236 (1972).

    Article  Google Scholar 

  43. E. R. D. Scott and J. T. Wasson, “Classification and Properties of Iron Meteorites,” Rev. Geophys. And Space Phys 13(4), 527–546 (1975).

    Article  Google Scholar 

  44. E. R. D. Scott, “Iron Meteorites with Low Ga and Ge Concentrations—Compositions, Structure and Genetic Relationship,” Geochim. Cosmochim. Acta 42(8), 1243–1251 (1978).

    Article  Google Scholar 

  45. E. R. D. Scott, “Pallasites—Metal Composition, Classification and Relationships with Iron Meteorites,” Geochim. Cosmochim. Acta 41(3), 349–360 (1977).

    Article  Google Scholar 

  46. A. K. Lavrukhina, A. Yu. Lyul, and G. V. Baryshnikova, “On Distribution of Siderophile Elements in Fe, Ni-Phase of Ordinary and Enstatite Chondrites,” Geokhimiya, No. 5, 645–663 (1982).

  47. I. Grossman, R. Ganapathi, and A. M. Davis, “Trace Elements in the Allende Meteorite-III. Coarse-Grained, Ca-Rich Inclusions Revisited,” Geochim. Cosmochim. Acta 41(11), 1647–1664 (1977).

    Article  Google Scholar 

  48. A. Yu. Lyul, G. M. Kolesov, and A. K. Lavrukhina, “Distribution of Refractory Elements in the Fragments of the Kainsaz CO Carbonaceous Chondrite” Geokhimiya, No. 10, 1467–1475 (1990).

  49. S. R. Taylor, “Chemical Characteristics of Ca-Al Inclusions in the Allende Meteorite,” Proc. Lunar Planet. Sci. 8, 1158–1160 (1978).

    Google Scholar 

  50. H. Palme, F. Wlotzka, K. Nagel, and A. El Goresy, “An Ultrarefractory Inclusion from the Ornans Carbonaceous Chondrite,” Earth Planet. Sci. Lett. 61(1), 1–12 (1982).

    Article  Google Scholar 

  51. A. M. Davis and R. W. Hinton, “Trace Element Abundances in OSCUR, a Scandium-Rich Refractory Inclusion from the Ornans Meteorite,” Meteoritics 20(4), 633–634 (1985).

    Google Scholar 

  52. A. F. Noonan, J. Nelen, and F. Fredriksson, “Zr-Y Oxides and High-Alkali Glass in Ameboid Inclusion from Ornans,” Meteoritics 12(3), 332–335 (1977).

    Google Scholar 

  53. V. Ekambaram, I. Kawabe, T. Tanaka, et al., “Chemical Composition in the Murchison C2 Chondrite,” Geochim. Cosmochim. Acta 48(10), 2089–2105 (1984).

    Article  Google Scholar 

  54. V. Ekambaram, S. Sluk, L. Grossman, and A. M. Davis, “Trace Elements in High-Temperature Inclusions from Murchison,” Meteoritics 19(4), 222–223 (1984).

    Google Scholar 

  55. A. M. Davis, T. Tanaka, L. Grossman, et al., “Chemical Composition of HAL, An Isotopically-Inusual Allende Inclusion,” Geochim. Cosmochim. Acta 46(9), 1627–1651 (1982).

    Article  Google Scholar 

  56. P. R. Buseck and E. Holdsworth, “Phosphate Minerals in Pallasite Meteorites,” Mineral. Mag. 41(317), 9–102 (1977).

    Article  Google Scholar 

  57. A. M. Davis and E. J. Olsen, “Phosphates in the Pallasite Meteorites As Probes of Mantle Processes in Small Planetary Bodies,” Nature 353, 637–640 (1991).

    Article  Google Scholar 

  58. A. M. Davis and E. J. Olsen, “REE Patterns in Pallasite Phosphates—A Window on Mantle Differentiation in Parent Body,” Meteorit. Planet. Sci 31 (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Lavrentjeva.

Additional information

Original Russian Text © Z.A. Lavrentjeva, A.Yu. Lyul, G.M. Kolesov, 2012, published in Geokhimiya, 2012, Vol. 50, No. 1, pp. 38–47.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrentjeva, Z.A., Lyul, A.Y. & Kolesov, G.M. The Omolon pallasite: Chemical composition, mineralogy, and genetic implications. Geochem. Int. 50, 34–43 (2012). https://doi.org/10.1134/S0016702912010065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702912010065

Keywords

Navigation