Skip to main content

Mineral equilibria of diamond-forming carbonate-silicate systems

Abstract

Based on experimental and mineralogical data, the model of mantle carbonate-silicate (carbonatite) melts as dominating parental media for natural diamonds was substantiated. It was demonstrated that the compositions of silicate constituents of parental melts were variable and saturated with respect to mantle rocks, namely pyrope peridotite, garnet pyroxenite, and eclogite. Based on concentration contributions and role in diamond genesis, major (carbonate and silicate) and minor (admixture) components were distinguished. The latter components may be both soluble (oxides, phosphates, chlorides, carbon dioxide, and water) and insoluble (sulfides, metals, and carbides) in silicate-carbonate melts. This paper presents the results of a study of diamond crystallization in multicomponent melts of variable composition with carbonate components (K2CO3, CaCO3 · MgCO3, and K-Na-Ca-Mg-Fe carbonatite) and silicate components represented by model peridotite (60 wt % olivine, 16 wt % orthopyroxene, 12 wt % clinopyroxene, and 12 wt % garnet) and eclogite (50 wt % garnet and 50 wt % clinopyroxene). Carbonate-silicate melts behave like completely miscible liquid phases in experiments performed under the P-T conditions of diamond stability. The concentration barriers of diamond nucleation (CBDN) in melts with variable proportions of silicates and carbonates were determined at 8.5 GPa. In the peridotite system with K2CO3, CaCO3 · MgCO3, and carbonatite, they correspond to 30, 25, and 30 wt % silicates, respectively, and in the eclogite system, the CBDN is shifted to 45, 30, and 35 wt % silicates. In the silicate-carbonate melts with higher silicate contents, diamond grows on seeds, which is accompanied by the crystallization of thermodynamically unstable graphite. At P = 7.0 GPa and T = 1200−1800°C, we studied and constructed phase diagrams for the multicomponent peridotite-carbonate and eclogite-carbonate systems as a physicochemical basis for revealing the syngenetic relationships between diamond and its silicate (olivine, ortho- and clinopyroxene, and garnet) and carbonate (aragonite and magnesite) inclusions depending on the physicochemical conditions of growth media. The results obtained allowed us to reconstruct the evolution of diamond-forming systems. The experiments revealed similarity between the compositions of synthetic silicate minerals and inclusions in natural diamonds (high concentrations of Na in garnets and K in clinopyroxenes). It was experimentally demonstrated that the formation of Na-bearing majoritic garnets is controlled by the P-T parameters and melt alkalinity. Diamonds with inclusions of such garnets can be formed in alkalic carbonate-silicate (aluminosilicate) melts. A mechanism was suggested for sodic end-member dissolution in majoritic garnets, and garnet with the composition Na2MgSi5O12 and tetragonal symmetry was synthesized for the first time.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N. V. Sobolev, Deep-Seated Inclusions and the Problem of Upper Mantle Composition (Nauka, Novosibirsk, 1974; Am. Geophys. Union, Washington, D.C., 1977).

    Google Scholar 

  2. 2.

    H. O. A. Meyer, “Inclusions in Diamond,” in Mantle Xenoliths, Ed. by P. H. Nixon (Wileys, Chichester, 1987), pp. 501–522.

    Google Scholar 

  3. 3.

    L. A. Taylor and M. Anand, “Diamonds: Time Capsules from the Siberian Mantle,” Chem. Erde 64, 1–74 (2004).

    Article  Google Scholar 

  4. 4.

    E. M. Galimov, “Possibilities of Synthesis of Natural Diamonds under Cavitation Conditions in Rapidly Moving Magmatic Melt,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 1, 22–37 (1973).

  5. 5.

    E. M. Galimov, “Possibility of Natural Diamond Synthesis under Conditions of Cavitation, Occurring in a Fast-Moving Magmatic Melt,” Nature 243, 389–391 (1973).

    Article  Google Scholar 

  6. 6.

    E. M. Galimov, “Some Evidence for the Feasibility of the Cavitation Synthesis of Diamond in Nature,” Geokhimiya, No. 4, 456–471 (1985).

  7. 7.

    S. K. Simakov, Physicochemical Conditions of the Formation of Diamondiferous Eclogite Assemblages in the Upper Mantle and Crustal Rocks (SVNTs DVO RAN, Magadan, 2003) [in Russian].

    Google Scholar 

  8. 8.

    N. V. Sobolev, “Diamond Assemblages and the Problem of Deep Mineral Formation,” Zap. Vseross. Mineral. O-va 112(4), 389–396 (1983).

    Google Scholar 

  9. 9.

    V. K. Garanin, G. P. Kudryavtseva, A. S. Marfunin, and O. A. Mikhailichenko, Inclusions in Diamond and Diamondiferous Rocks (Mosk. Gos. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  10. 10.

    J. W. Harris, “Diamond Geology,” in The Properties of Natural and Synthetic Diamonds, Ed. by J. E. Field (Academic Press, London, 1992), pp. 345–393.

    Google Scholar 

  11. 11.

    R. O. Moore and J. J. Gurney, “Pyroxene Solid Solution in Garnets Included in Diamonds,” Nature 318, 553–555 (1985).

    Article  Google Scholar 

  12. 12.

    R. O. Moore and J. J. Gurney, “Mineral Inclusions in Diamond from the Monastery Kimberlite, South Africa,” in Kimberlites and Related Rocks, Ed. by J. Ross (Blackwell Sci. Publ., Melbourne, 1989), pp. 1029–1041.

    Google Scholar 

  13. 13.

    T. Stachel, “Diamonds from the Asthenosphere and the Transition Zone,” Eur. J. Mineral. 13, 883–892 (2001).

    Article  Google Scholar 

  14. 14.

    T. Stachel, G. P. Brey, and J. W. Harris, “Kankan Diamonds (Guinea) I: From the Lithosphere down to the Transition Zone,” Contib. Mineral. Petrol. 140, 1–15 (2000).

    Article  Google Scholar 

  15. 15.

    B. H. Scott Smith, R. U. Danchin, J. W. Harris, and K. J. Stracke, “Kimberlites near Orroroo, South Australia,” in Kimberlites I: Kimberlites and Related Rocks, Ed. by J. Kornprobst (Elsevier, Amsterdam, 1984), pp. 121–142.

    Google Scholar 

  16. 16.

    B. Harte, J. W. Harris, M. T. Hutchinson, G. R. Watt, and M. C. Wilding, “Lower Mantle Mineral Associations in Diamonds from São Luiz, Brazil,” in Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd, Ed. by Y. Fei, C. M. Bertka, and B. O. Mysen (Geochem. Soc., Houston, 1999), pp. 125–153.

    Google Scholar 

  17. 17.

    T. Stachel, J. W. Harris, G. P. Brey, and W. Joswig, “Kankan Diamonds (Guinea) II: Lower Mantle Inclusion Parageneses,” Contrib. Mineral. Petrol. 140, 16–27 (2000).

    Article  Google Scholar 

  18. 18.

    F. V. Kaminsky, O. D. Zakharchenko, R. Davies, et al., “Superdeep Diamonds from the Juina Area, Mato Grosso State, Brazil,” Contrib. Mineral. Petrol. 140, 734–753 (2001).

    Article  Google Scholar 

  19. 19.

    O. Navon, I. D. Hutcheon, G. R. Rossman, and G. J. Wasserburg, “Mantle-Derived Fluids in Diamond Micro-Inclusions,” Nature 335, 784–789 (1988).

    Article  Google Scholar 

  20. 20.

    O. Navon and E. S. Izraeli, O. Klein-BenDavid, “Fluid Inclusions in Diamonds-The Carbonatitic Connection,” in Extended Abstracts of 8th International Kimberlite Conference, Victoria, Canada, 2003 (Victoria, 2003), CD-ROM. FLA-0107.

  21. 21.

    M. Schrauder and O. Navon, “Hydrous and Carbonatitic Mantle Fluids in Fibrous Diamonds from Jwaneng, Botswana,” Geochim. Cosmochim. Acta 58(2), 761–771 (1994).

    Article  Google Scholar 

  22. 22.

    E. S. Izraeli, J. W. Harris, and O. Navon, “Brine Inclusions in Diamonds: A New Upper Mantle Fluid,” Earth Planet. Sci. Lett. 187(3–4), 323–332 (2001).

    Article  Google Scholar 

  23. 23.

    E. S. Izraeli, J. W. Harris, and O. Navon, “Fluid and Mineral Inclusions in Cloudy Diamonds from Koffiefontein, South Africa,” Geochim. Cosmochim. Acta 68, 2561–2575 (2004).

    Article  Google Scholar 

  24. 24.

    D. A. Zedgenizov, H. Kagi, V. S. Shatsky, and N. V. Sobolev, “Carbonatitic Melts in Cuboid Diamonds from Udachnaya Kimberlite Pipe (Yakutia): Evidence from Vibrational Spectroscopy,” Mineral. Mag. 68(1), 61–73 (2004).

    Article  Google Scholar 

  25. 25.

    A. A. Shiryaev, E. S. Izraeli, E. G. Hauri, et al., “Chemical, Optical, and Isotopic Investigations of Fibrous Diamond from Brazil,” Russ. Geol. Geophys. 46(12), 1185–1201 (2005).

    Google Scholar 

  26. 26.

    O. Klein-BenDavid, E. S. Izraeli, E. Hauri, and O. Navon, “Mantle Fluid Evolution—A Tale of One Diamond,” Lithos 77, 243–253 (2004).

    Article  Google Scholar 

  27. 27.

    O. Klein-BenDavid, E. S. Izraeli, E. Hauri, and O. Navon, “Fluid Inclusions in Diamonds from the Diavik Mine, Canada and the Evolution of Diamond-Forming Fluids,” Geochim. Cosmochim. Acta 71, 723–724 (2007).

    Article  Google Scholar 

  28. 28.

    A. M. Logvinova, R. Wirth, E. N. Fedorova, and N. V. Sobolev, “Nanometre-Sized Mineral and Fluid Inclusions in Cloudy Siberian Diamonds: New Insights on Diamond Formation,” Eur. J. Mineral. 20, 317–331 (2008).

    Article  Google Scholar 

  29. 29.

    S. E. Haggerty, “Diamond Genesis in a Multiply-Constrained Model,” Nature 320, 34–38 (1986).

    Article  Google Scholar 

  30. 30.

    O. Navon, “Diamond Formation in the Earth’s Mantle,” in Proceedings of 7th International Kimberlite Conference, Cape Town, South Africa, 1999, Ed. by J. J. Gurney, J. L. Gurney, M. D. Pascoe, and S. H. Richardson (Red Roof Design, Cape Town, 1999), Vol. 2, pp. 584–604.

    Google Scholar 

  31. 31.

    Yu. A. Litvin, “High-Pressure Mineralogy of Diamond Genesis,” in Advances in High-Pressure Mineralogy, Ed. by E. Ohtani, Geol. Soc. Amer. Spec. Pap. 421, 83–103 (2007).

  32. 32.

    A. A. Marakushev, “Mineral Assemblages of Diamond and the Problem of the Formation of Diamondiferous Magmas,” in Essays on Physicochemical Petrology (Nauka, Moscow, 1985), No. 13, pp. 5–53 [in Russian].

    Google Scholar 

  33. 33.

    A. V. Ukhanov, I. D. Ryabchikov, and A. D. Khar’kiv, Lithospheric Mantle of the Yakutian Kimberlite Province (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  34. 34.

    G. P. Bulanova, Yu. P. Barashkov, S. B. Tal’nikova, and G. B. Smelova, Natural Diamond: Genetic Aspects (Nauka, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  35. 35.

    H. O. A. Meyer and H.-M. Tsai, “The Nature and Significance of Mineral Inclusions in Natural Diamond: A Review,” Mineral. Sci. Eng. 8(4), 242–261 (1976).

    Google Scholar 

  36. 36.

    A. L. Jaques, J. D. Lewis, and C. B. Smith, The Kimberlites and Lamproites of Western Australia (Govern. Printing Office, Perth, 1986).

    Google Scholar 

  37. 37.

    Mantle Xenoliths, Ed. by P. H. Nixon (John Wiley Sons, Chichester, 1987).

    Google Scholar 

  38. 38.

    Geology and Genesis of Diamond Deposits, Ed. by B. M. Zubarev (TsNIGRI, 1989), Vol. 1–2 [in Russian].

  39. 39.

    Z. V. Spetsius and V. P. Serenko, Composition of the Continental Upper Mantle and Lower Crust beneath the Siberian Platform (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  40. 40.

    S. V. Titkov, A. I. Gorshkov, N. G. Zudin, et al., “Micro-inclusions in Dark Gray Diamond Crystals of Octahedral Habit from Yakutian Kimberlites,” Geochem. Int. 44, 1121–1128 (2006).

    Article  Google Scholar 

  41. 41.

    M. Prinz, D. V. Manson, P. F. Hlava, and K. Keil, “Inclusions in Diamonds: Garnet Lherzolite and Eclogite Assemblages,” Phys. Chem. Earth 9, 797–815 (1975).

    Article  Google Scholar 

  42. 42.

    J. W. Harris, and J. J. Gurney, “Inclusions in Diamond,” in The Properties of Diamond, Ed. by J. E. Field (Academic Press, London, 1979), pp. 555–591.

    Google Scholar 

  43. 43.

    D. G. Pearson and S. B. Shirey, “Isotopic Dating of Diamonds,” in SEG Reviews, Ed. by Lambert, D. and J. Ruiz, Econ. Geol. Spec. Publ. 12, 143–171 (1999).

  44. 44.

    N. V. Sobolev, N. P. Pokhilenko, and E. S. Efimova, “Xenoliths of Diamondiferous Peridotites in Kimberlites and Problems of Diamond Origin,” Geol. Geofiz., No. 12, 63–80 (1984).

  45. 45.

    N. V. Sobolev, B. A. Fursenko, S. V. Goryainov, et al., “Fossilized High Pressure from the Earth’s Deep Interior: the Coesite-in-Diamond Barometer,” Proc. Natl. Acad. Sci. USA 97(22), 11875–11879 (2000).

    Article  Google Scholar 

  46. 46.

    H. O. A. Meyer and F. R. Boyd, “Inclusions in Diamonds,” Carnegie Inst. Washington Yearbook 66, 446–450 (1968).

    Google Scholar 

  47. 47.

    Deep Xenoliths and the Upper Mantle, Ed. by V. S. Sobolev, N. L. Dobretsov, and N. V. Sobolev (Nauka, Novosibirsk, 1975) [in Russian].

    Google Scholar 

  48. 48.

    A. D. Khar’kiv, Mineralogical Principles of Search for Diamond Deposits (Nedra, Moscow, 1978) [in Russian].

    Google Scholar 

  49. 49.

    E. E. Laz’ko, Diamond-Associated Minerals and Genesis of Kimberlite Rocks (Nedra, Moscow, 1979) [in Russian].

    Google Scholar 

  50. 50.

    S. E. Haggerty, “Oxide Mineralogy of the Upper Mantle,” Rev. Mineral. 25, 355–416 (1991).

    Google Scholar 

  51. 51.

    G. P. Bulanova, Z. V. Spetsius, and N. V. Leskova, Sulfides in the Diamonds and Xenoliths from Kimberlite Pipes of Yakutia (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  52. 52.

    V. S. Sobolev, N. V. Sobolev, and V. G. Lavrent’ev, “Inclusions in Diamond from Diamond-Bearing Eclogite,” Dokl. Akad. Nauk SSSR 207(1), 172–178 (1972).

    Google Scholar 

  53. 53.

    N. V. Sobolev, Yu. G. Lavrent’ev, L. N. Pospelova, and E. V. Sobolev, “Chrome Pyropes from the Yakutian Diamonds,” Dokl. Akad. Nauk SSSR 189(1), 162–165 (1969).

    Google Scholar 

  54. 54.

    W. L. Griffin, N. V. Sobolev, C. G. Ryan, et al., “Trace Elements in Garnets and Chromites: Diamond Formation in the Siberian Lithosphere,” Lithos 29, 235–256 (1993).

    Article  Google Scholar 

  55. 55.

    V. P. Afanas’ev, N. N. Zinchuk, and N. P. Pokhilenko, Morphology and Morphogenesis of Typomorphic Minerals of Kimberlites (Filial “Geo” Izd-va SO RAN, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  56. 56.

    N. V. Sobolev, E. S. Efimova, F. V. Kaminskii, et al., “Titanate of Complex Composition and Phlogopite in the Diamond Stability Field,” in Composiiton and Processes of Deep-Seated Zones of the Continental Lithosphere (Novosibirsk, 1988), pp. 79–81 [in Russian].

  57. 57.

    N. V. Sobolev, A. M. Logvinova, and E. S. Efimova, “Syngenetic Phlogopite Inclusions in Kimberlite-Hosted Diamonds: Implications for the Role of Volatiles in Diamond Formation,” Russ. Geol. Geofiz. 50, 1234–1248 (2009).

    Article  Google Scholar 

  58. 58.

    M. B. Kamenetsky, A. V. Sobolev, V. S. Kamenetsky, et al., “Kimberlite Melts Rich in Alkali Chlorides and Carbonates in the Udachnaya Kimberlite: A Potent Metasomatic Agent in the Mantle,” Geology 32, 845–848 (2004).

    Article  Google Scholar 

  59. 59.

    J. J. Gurney, “Diamonds,” in Diamonds, Kimberlites and Related Rocks, Ed. by J. Ross et al., Geol. Soc. Aust. Spec. Publ. 14 (Blackwell Sci. Publ., Melbourne, 1989), pp. 935–965.

    Google Scholar 

  60. 60.

    R. G. Coleman, D. E. Lee, L. B. Beatty, and W. W. Brannock, “Eclogites and Eclogites: Their Differences and Similarities,” Bull. Geol. Soc. Am. 76, 483–508 (1965).

    Article  Google Scholar 

  61. 61.

    L. A. Taylor and C. R. Neal, “Eclogites with Oceanic Crustal and Mantle Signatures from the Bellsbank Kimberlite, South Africa. Part 1: Mineralogy, Petrography, and Whole Rock Chemistry,” J. Geol. 97, 551–567 (1989).

    Article  Google Scholar 

  62. 62.

    N. V. Sobolev, “Isomorphic Sodium Admixture in Garnets Formed at High Pressures,” Contib. Mineral. Petrol. 31, 1–12 (1971).

    Article  Google Scholar 

  63. 63.

    N. P. Pokhilenko, N. V. Sobolev, and E. S. Efimova, “Xenolith of Cataclased Disthene Eclogite from the Udachnaya Pipe (Yakutia),” Dokl. Akad. Nauk SSSR 266(1), 212–216 (1982).

    Google Scholar 

  64. 64.

    N. V. Sobolev, I. T. Bakumenko, E. S. Efimova, and N. P. Pokhilenko, “Peculiarity of Microdiamond Morphology, Contents of Sodium in Garnets and Potassium in Pyroxenes of Two Eclogite Xenoliths from the Udachnaya Kimberlite Pipe, Yakutia,” Dokl. Akad. Nauk SSSR 321(3), 585–590 (1991).

    Google Scholar 

  65. 65.

    N. V. Sobolev, E. S. Yefimova, and D. M. Channer de R. P.F.N. Anderson, and K. M. Barron, “Unusual Upper Mantle beneath Guaniamo, Guyana Shield, Venezuela: Evidence from Diamond Inclusions,” Geology 26, 971–974 (1998).

    Article  Google Scholar 

  66. 66.

    N. P. Pokhilenko, N. V. Sobolev, J. A. McDonald, et al., “Crystalline Inclusions in Diamonds from Kimberlites of the Snap Lake Area (Slave Craton, Canada): New Evidences for the Anomalous Lithospheric Structure,” Dokl. Earth Sci. 380, 806–811 (2001).

    Google Scholar 

  67. 67.

    L. L. Perchuk, O. G. Safonov, V. O. Yapaskurt, and J.M. Barton, Jr., “Crystal-Melt Equilibria Involving Potassium-Bearing Clinopyroxene as Indicators of Mantle-Derived Ultra-Potassic Liquids: An Analytical Review,” Lithos 60, 89–111 (2002).

    Article  Google Scholar 

  68. 68.

    O. G. Safonov, Yu. A. Litvin, and L. L. Perchuk, “Synthesis of Omphacites and Isomorphic Features of Clinopyroxenes in the System CaMgSi2O6-NaAlSi2O6-KAlSi2O6,” Petrology 12, 70–81 (2004).

    Google Scholar 

  69. 69.

    N. V. Sobolev, G. A. Snyder, L. A. Taylor, et al., “Extreme Chemical Diversity in the Mantle during Diamond Formation: Evidence from 35 Garnet and 5 Pyroxene Inclusions in a Single Diamond,” Int. Geol. Rev. 40, 567–578 (1998).

    Article  Google Scholar 

  70. 70.

    A. I. Chepurov, I. I. Fedorov, and V. M. Sonin, Experimental Modeling of Diamond Formation (SO RAN, NITs OIGGM, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  71. 71.

    B. O. Mysen and A. L. Boettcher, Melting of a Hydrous Mantle (J. Petrol. 16, 520–593; Mir, Moscow, 1979).

    Google Scholar 

  72. 72.

    W. R. Taylor and D. H. Green, “Measurement of Reduced Peridotite-C-O-H Solidus and Implications for Redox Melting of the Mantle,” Nature 332, 349–352 (1988).

    Article  Google Scholar 

  73. 73.

    A. Gupta and K. Yagi, “Experimental Study of Two Picrites with Reference to the Genesis of Kimberlite,” in Extended Abstracts of 2nd International Kimberlite Conference (Santa Fe, 1977), pp. 339–343.

  74. 74.

    R. Dasgupta, M. M. Hirschmann, and A. C. Withers, “Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous, Carbonated Eclogite under Upper Mantle Conditions,” Earth Planet. Sci. Lett. 227, 73–85 (2004).

    Article  Google Scholar 

  75. 75.

    S. K. Simakov and L. A. Taylor, “Geobarometry for Mantle Eclogites: Solubility of Ca-Tschermaks in Clinopyroxene,” Int. Geol. Rev. 42, 534–544 (2000).

    Article  Google Scholar 

  76. 76.

    F. P. Bundy, “Direct Conversion of Graphite to Diamond in Static Pressure Apparatus,” J. Chem. Phys. 38(3), 631–643 (1963).

    Article  Google Scholar 

  77. 77.

    V. S. Sobolev, “Conditions of Formation of Diamond Deposits,” Geol. Geofiz., No. 1, 7–22 (1960).

  78. 78.

    C. E. Melton and A. A. Giardini, “The Composition and Significance of Gas Released from Natural Diamonds from Africa and Brazil,” Am. Mineral. 59, 775–782 (1974).

    Google Scholar 

  79. 79.

    G. P. Bulanova and L. A. Pavlova, “Association of Magnesite Peridotite in Diamond from the Mir Pipe,” Dokl. Akad. Nauk SSSR 295(6), 1452–1456 (1987).

    Google Scholar 

  80. 80.

    A. Wang, J. D. Pasteris, H. O. A. Meyer, and M. L. Dele-Dubois, “Magnesite-Bearing Inclusions Assemblage in Natural Diamond,” Earth Planet. Sci. Lett. 141, 293–306 (1996).

    Article  Google Scholar 

  81. 81.

    I. Leost, T. Stachel, G. P. Brey, et al., “Diamond Formation and Source Carbonation: Mineral Associations in Diamonds from Namibia,” Contrib. Mineral. Petrol. 145, 15–24 (2003).

    Article  Google Scholar 

  82. 82.

    P. McDade and J. W. Harris, “Syngenetic Inclusion-Bearing Diamonds from the Letseng-la-Terai, Lesotho,” in Proceedings of 7th International Kimberlite Conference, Cape Town, South Africa, 1999, Ed. by J. J. Gurney, J. L. Gurney, M. D. Pascoe, and S. H. Richardson (Red Roof Design, Cape Town, 1999), Vol. 2, pp. 557–565.

    Google Scholar 

  83. 83.

    N. V. Sobolev, F. V. Kaminsky, W. L. Griffin, et al., “Mineral Inclusions in Diamonds from the Sputnik Kimberlite Pipe, Yakutia,” Lithos. 39, 135–157 (1997).

    Article  Google Scholar 

  84. 84.

    A. E. Hall and C. B. Smith, “Lamproite Diamonds—are They Different?” in Kimberlite Occurrence and Origin: A Basis for Conceptual Models in Exploration, Ed. by J. E. Glover and P. G. Harris, Geol. Dep. Univ. Ext., Univ. West. Austral. 8, 167–212 (1984).

  85. 85.

    M. L. Otter and G. G. Gurney, “Mineral Inclusions in Diamonds from the State Line Kimberlite District, North America,” in Extended Abstracts of 4th International Kimberlite Conference, Perth, Australia, 1986 (Perth, 1986), pp. 415–417.

  86. 86.

    R. O. Moore and J. J. Gurney, “Mineral Inclusions in Diamonds from the Monastery Kimberlite, South Africa,”in Extended Abstracts of 4th International Kimberlite Conference, Perth, Australia 1986 (Perth, 1986), pp. 406–409.

  87. 87.

    A. L. Jaques, A. E. Hall, J. W. Sheraton, C. B. Smith, S. S. Sun, R. M. Drew, C. Foudoulis, and K. Ellingsen, “Composition of Crystalline Inclusions and C-Isotopic Composition of Argyle and Ellendale Diamonds,” in Diamonds, Kimberlites and Related Rocks, Ed. by J. Ross et al., (Blackwell Sci., Melbourne, 1989), Geol. Soc. Aust. Spec. Publ. 14, 966–989 (1989).

    Google Scholar 

  88. 88.

    W. Wang, “Formation of Diamond with Mineral Inclusions of ‘Mixed’ Eclogite and Peridotite Paragenesis,” Earth Planet. Sci. Lett. 160, 831–843 (1998).

    Article  Google Scholar 

  89. 89.

    W. E. Sharp, “Pyrrhotite: A Common Inclusion in the South African Diamonds,” Nature 211, 402–403 (1966).

    Article  Google Scholar 

  90. 90.

    G. P. Bulanova, O. E. Shestakova, and N. V. Leskova, “Sulfide Inclusions in the Yakutian Diamonds,” Zap. Vseross. Mineral. O-va 111, 557–562 (1982).

    Google Scholar 

  91. 91.

    E. S. Efimova, N. V. Sobolev, and L. N. Pospelova, “Sulfide Inclusions in Diamonds and Features of Their Assemblage,” Zap. Vseross. Mineral. O-va 112, 300–310 (1983).

    Google Scholar 

  92. 92.

    V. K. Garanin, A. N. Krot, and G. P. Kudryavtseva, Sulfide Inclusions in Minerals from Kimberlites (Mosk. Gos. Univ., Moscow, 1988), Vol. 1–2 [in Russian].

    Google Scholar 

  93. 93.

    Z. V. Spetsius and L. A. Taylor, Diamonds of Yakutia: Photographic Evidence for Their Origin (Tranquility Base Press. Lenoir City, 2008).

    Google Scholar 

  94. 94.

    B. Harte and J. W. Harris, “Lower Mantle Associations Preserved in Diamonds,” Mineral. Mag. 58A, 384–385 (1994).

    Article  Google Scholar 

  95. 95.

    P. C. Hayman, M. G. Kopylova, and F. V. Kaminsky, “Lower Mantle Diamonds from Rio Soriso (Juina Area, Mato Grosso, Brazil),” Contrib. Mineral. Petrol. 149, 430–445 (2005).

    Article  Google Scholar 

  96. 96.

    R. M. Davies, W. L. Griffin, and S. Y. O’Reilly, “Diamonds from the Deep: Pipe DO27, Slave Craton, Canada,” in Proceedings of 7th International Kimberlite Conference, Cape Town, South Africa, 1999, Ed. by J. J. Gurney, J. L. Gurney, M. D. Pascoe, and S. H. Richardson (Cape Town, Red Roof Design, 1999), Vol. 1, pp. 148–155.

    Google Scholar 

  97. 97.

    R. M. Davies, W. L. Griffin, S. Y. O’Reilly, and T. E. Mc-Candless, “Inclusions in Diamonds from the K14 and K10 Kimberlites, Buffalo Hills, Alberta, Canada: Diamond Growth in a Plume?,” Lithos. 77, 99–111 (2004).

    Article  Google Scholar 

  98. 98.

    N. P. Pokhilenko, N. V. Sobolev, V. N. Reutsky, et al., “Crystalline Inclusions and C Isotope Ratios in Diamonds from the Snap Lake/King Lake Kimberlite Dyke System: Evidence of Ultradeep and Enriched Lithospheric Mantle,” Lithos. 77, 57–67 (2004).

    Article  Google Scholar 

  99. 99.

    B. Harte and N. Cayzer, “Decompression and Unmixing of Crystals Included in Diamonds from the Mantle Transition Zone,” Phys. Chem. Minerals 34, 647–656 (2007).

    Article  Google Scholar 

  100. 100.

    W. Wang, S. Sueno, E. Takahashi, et al., “Enrichment Processes at the Base of the Archean Lithospheric Mantle: Observations from Trace-Element Characteristics of Pyropic Garnet Inclusions in Diamond,” Contrib. Mineral. Petrol. 139, 720–733 (2000).

    Article  Google Scholar 

  101. 101.

    P. Deines, J. W. Harris, and J. J. Gurney, “The Carbon Isotopic Composition and Nitrogen Content of Lithospheric and Asthenospheric Diamonds from the Jagersfontein and Koffiefontein Kimberlite, South Africa,” Geochim. Cosmochim. Acta 55, 2615–2625 (1991).

    Article  Google Scholar 

  102. 102.

    N. M. McKenna, J. J. Gurney, J. Klump, and J. M. Davidson, “Aspects of Diamond Mineralisation and Distribution at the Helam Mine, South Africa,” Lithos. 77, 193–208 (2004).

    Article  Google Scholar 

  103. 103.

    M. T. Hutchison, Constitution of Deep Transition Zone and Lower Mantle Shown by Diamonds and Their Inclusions, Unpublished PhD Thesis, University of Edinburgh, (1997).

  104. 104.

    N. V. Sobolev, E. S. Efimova, L. F. Reimers, et al., “Mineral Inclusions in Diamonds of the Arkhangelsk Kimberlite Province,” Geol. Geofiz. 38(2), 358–370 (1997).

    Google Scholar 

  105. 105.

    N. V. Sobolev, A. M. Logvinova, D. A. Zedgenizov, et al., “Mineral Inclusions in Microdiamonds and Macrodiamonds from Kimberlites of Yakutia: A Comparative Study,” Lithos. 77, 225–242 (2004).

    Article  Google Scholar 

  106. 106.

    V. S. Shatskii, D. A. Zedgenizov, and A. L. Ragozin, “Majoritic Garnets in Diamonds from Placers of the Northeastern Siberian Platform,” Dokl. Earth Sci. 432, 835–838 (2010).

    Article  Google Scholar 

  107. 107.

    T. Stachel, G. P. Brey, and J. W. Harris, “Inclusions in Sublithospheric Diamonds: Glimpses of Deep Earth,” Elements 1, 73–78 (2005).

    Article  Google Scholar 

  108. 108.

    W. Joswig, T. Stachel, J. W. Harris, et al., “New Ca-Silicate Inclusions in Diamonds-Tracers from the Lower Mantle,” Earth Planet. Sci. Lett. 173, 1–6 (1999).

    Article  Google Scholar 

  109. 109.

    M. Akaogi and A. Akimoto, “Pyroxene-Garnet Solid-Solution Equilibria in the Systems Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12 at High Pressures and Temperatures,” Phys. Earth. Planet. Inter. 15, 90–106 (1977).

    Article  Google Scholar 

  110. 110.

    T. Irifune, “An Experimental Investigation of the Pyroxene-Garnet Transformation in a Pyrolite Composition and Its Bearing on the Constitution of the Mantle,” Phys. Earth Planet. Inter. 45, 324–336 (1987).

    Article  Google Scholar 

  111. 111.

    A. E. Ringwood and A. Major, “Synthesis of Majorite and Other High Pressure Garnets and Perovskites,” Earth. Planet Sci. Lett. 12, 411–418 (1971).

    Article  Google Scholar 

  112. 112.

    T. Irifune, T. Sekine, A. E. Ringwood, and W. O. Hibberson, “The Eclogite-Garnetite Transformation at High Pressure and Some Geophysical Implications,” Earth Planet. Sci. Lett. 77, 245–256 (1986).

    Article  Google Scholar 

  113. 113.

    M. C. Wilding, A Study of Diamonds with Syngenetic Inclusions, Unpublished PhD Thesis (University of Edinburgh, 1990).

  114. 114.

    T. Gasparik, “Experimental Investigations of the Origin of Majoritic Garnet Inclusions in Diamonds,” Phys. Chem. Minerals 29, 170–180 (2002).

    Article  Google Scholar 

  115. 115.

    D. D. Badyukov, “High-Pressure Phases in Impactites of the Zhamanshin Crater (USSR),” in Abstracts of 16th Lunar and Planetary Science Conference, Houston, US, 1985 (Houston, 1985), pp. 21–22.

  116. 116.

    N. V. Sobolev, E. S. Yefimova, and V. I. Koptil, “Mineral Inclusions in Diamonds in the Northeast of the Yakutian Diamondiferous Province,” in Proceedings of 7th International Kimberlite Conference, Cape Town, South Africa, 1999, Ed. by J. J. Gurney, J. L. Gurney, M. D. Pascoe, and S. H. Richardson, (Red Roof Design, Cape Town, 1999), Vol. 2, pp. P. 816–822.

    Google Scholar 

  117. 117.

    T. Stachel, J. W. Harris, and G. P. Brey, “REE Patterns of Peridotitic and Eclogitic Inclusions in Diamonds from Mwadui (Tanzania),” in Proceedings of 7th International Kimberlite Conference, Cape Town, South Africa, 1999, Ed. by J. J. Gurney, J. L. Gurney, M. D. Pascoe, and S. H. Richardson (Red Roof Design, Cape Town, 1999), Vol. 2, pp. 829–835.

    Google Scholar 

  118. 118.

    T. E. McCandless and J. J. Gurney, “Sodium in Garnet and Potassium in Clinopyroxene: Criteria for Classifying Mantle Eclogites,” in Kimberlites and Related Rocks, Ed. by J. Ross (Blackwell Sci. Publ., Melbourne, 1989), pp. 827–832.

    Google Scholar 

  119. 119.

    R. N. Thompson, “Is Upper Mantle Phosphorus Contained in Sodic Garnet?,” Earth Planet. Sci. Lett. 26, 417–424 (1975).

    Article  Google Scholar 

  120. 120.

    F. C. Bishop, J. V. Smith, and J. B. Dawson, “Na, K, P and Ti in Garnet, Pyroxene and Olivine from Peridotite and Eclogite Xenoliths from African Kimberlites,” Lithos 11, 155–173 (1978).

    Article  Google Scholar 

  121. 121.

    F. Brunet, V. Bonneau, and T. Irifune, “Complete Solid Solutions between Na3Al2(PO4)3 and Mg3Al2(SiO4)3 Garnets at High Pressure,” Am. Mineral. 91, 211–215 (2006).

    Article  Google Scholar 

  122. 122.

    S. E. Haggerty and V. Sautter, “Ultra-Deep (>300 km) Ultramafic, Upper Mantle Xenoliths,” Science 248, 993–996 (1990).

    Article  Google Scholar 

  123. 123.

    R. M. Chrenko, R. S. McDonald, and K. A. Darrow, “Infra-Red Spectrum of Diamond Coat,” Nature 214, 474–476 (1967).

    Article  Google Scholar 

  124. 124.

    D. M. Bibby, “Impurities in Natural Diamond,” in Chemistry and Physics of Carbon, Ed. by P. A. Thrower (Marcel Dekker, New York, 1982), Vol. 18, pp. 1–91.

    Google Scholar 

  125. 125.

    A. R. Lang and J. C. Walmsley, “Apatite Inclusion in Natural Diamond Coat,” Phys. Chem. Minerals 9, 6–8 (1983).

    Article  Google Scholar 

  126. 126.

    G. D. Guthrie, D. R. Veblen, O. Navon, and G. R. Rossman, “Submicrometer Fluid Inclusions in Turbid-Diamond Coats,” Earth Planet. Sci. Lett. 105, 1–12 (1991).

    Article  Google Scholar 

  127. 127.

    G. P. Bulanova, P. G. Novgorodov, and L. A. Pavlova, “First Finding of Melt Inclusion in Diamond from the Mir Pipe,” Geokhimiya, No. 5, 756–765 (1988).

  128. 128.

    P. G. Novgorodov, G. P. Bulanova, L. A. Pavlova, et al., “Inclusions of Potassic Phases, Coesite, and Omphacite in Coated Diamond Crystals from the Mir Pipe,” Dokl. Akad. Nauk 310, 439–443 (1990).

    Google Scholar 

  129. 129.

    D. A. Zedgenizov, A. M. Logvinova, V. S. Shatskii, and N. V. Sobolev, “Inclusions in Microdiamonds from Some Kimberlite Diatremes of Yakutia,” Dokl. Earth Sci. 359, 204–208 (1998).

    Google Scholar 

  130. 130.

    I. Sunagava, “Growth of crystals in Nature,” in Materials Science of the Earth’s Interior, Ed. by I. Sunagava (Terra Sci. Publ. Comp., Tokyo, 1984), pp. 61–103.

    Google Scholar 

  131. 131.

    I. Sunagawa, “Growth and Morphology of Diamond Crystals under Stable and Metastable Conditions,” J. Cryst. Growth 99, 1156–1161 (1990).

    Article  Google Scholar 

  132. 132.

    O. Navon, “Infrared Determination of High Internal Pressures in Diamond Fluid Inclusions,” Nature 353, 746–748 (1991).

    Article  Google Scholar 

  133. 133.

    E. L. Tomlinson, A. P. Jones, and J. W. Harris, “Co-Existing Fluid and Silicate Inclusions in Mantle Diamond,” Earth Planet. Sci. Lett. 250, 581–595 (2006).

    Article  Google Scholar 

  134. 134.

    P. J. Wyllie and I. D. Ryabchikov, “Volatile Components, Magmas, and Critical Fluids in Upwelling Mantle,” J. Petrol. 41, 1195–1206 (2000).

    Article  Google Scholar 

  135. 135.

    R. Kessel, P. Ulmer, T. Pettke, et al., “The Water-Basalt System at 4 to 6 GPa: Phase Relations and Second Critical Endpoint in a K-Free Eclogite at 700 to 1400°C,” Earth Planet. Sci. Lett. 237, 873–892 (2005).

    Article  Google Scholar 

  136. 136.

    D. A. Zedgenizov, S. Rege, W. L. Griffin, et al., “Composition of Trapped Fluids in Cuboid Fibrous Diamonds from the Udachnaya Kimberlite: LAM-ICPMS Analysis,” Chem. Geol. 240, 151–162 (2007).

    Article  Google Scholar 

  137. 137.

    D. A. Zedgenizov, D. Araujo, A. L. Ragozin, et al., “Carbonatitic to Hydrous Silicic Growth Medium of Diamonds from Internatsionalnaya Kimberlite Pipe, Yakutia,” in Extended Abstracts of 9th International Kimberlite Conference, 2008 CD-ROM. 9IKC-A-00108.

  138. 138.

    D. A. Zedgenizov, A. L. Ragozin, and V. S. Shatskii, “Chloride-Carbonate Fluid in Diamonds from the Eclogite Xenolith,” Dokl. Earth Sci. 415, 800–803 (2007).

    Article  Google Scholar 

  139. 139.

    O. Klein-BenDavid, R. Wirth, and O. Navon, “TEM Imaging and Analysis of Microinclusions in Diamonds: A Close Look at Diamond-Bearing Fluids,” Am. Mineral. 91, 353–356 (2006).

    Article  Google Scholar 

  140. 140.

    O. G. Safonov, L. L. Perchuk, and Yu. A. Litvin, “Melting Relations in the Chloride-Carbonate-Silicate Systems at High-Pressure and the Model for Formation of Alkalic Diamond-Forming Liquids in the Upper Mantle,” Earth Planet. Sci. Lett. 253, 112–128 (2007).

    Article  Google Scholar 

  141. 141.

    O. Navon, O. Klein-BenDavid, A. Logvinova, N. V. Sobolev, M. Schrauder, F. V. Kaminsky, and Z. Spetsius, “Yakutian Diamond-Forming Fluids—The Evolution of Carbonatitic High Density Fluids,” in Extended Abstracts of 9th International Kimberlite Conference, 2008 CD-ROM. 9IKC-A-00120.

  142. 142.

    O. Klein-BenDavid, A. M. Longvinova, E. S. Izraeli, N. V. Sobolev, and O. Navon, “Sulfide Melt Inclusions in Yubileinayan (Yakutia) Diamonds,” in Extended Abstracts of 8th International Kimberlite Conference, Victoria, Canada, 2003 (Victoria, 2008), CD-ROM. FLA-0111.

  143. 143.

    F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, “Man-Made Diamond,” Nature 176, 51–54 (1955).

    Article  Google Scholar 

  144. 144.

    H. Liander, “Diamond Synthesis,” Allmana Svenska Elektriska Aktiebolaget Journal 28, 97–98 (1955).

    Google Scholar 

  145. 145.

    O. I. Leipunskii, “On Man-Made Diamonds,” Usp. Khim. 8(10), 1520–1534 (1939).

    Google Scholar 

  146. 146.

    Yu. A. Litvin, “Mechanism of the Diamond Formation in the Metal-Carbon Systems,” Izv. Akad. Nauk SSSR, Ser. Neorgan. Mat., No. 2, 175–181 (1968).

  147. 147.

    Yu. A. Litvin, “Problem of Diamond Origin,” Zap. Vseross. Mineral. O-va 98(1), 116–123 (1969).

    Google Scholar 

  148. 148.

    A. A. Shul’zhenko and A. F. Get’man, Diamond Synthesis, German Patent, no. 2032083, 1971.

  149. 149.

    A. A. Shul’zhenko and A. F. Get’man, Diamond synthesis, German Patent, no. 2124145, 1972.

  150. 150.

    M. Akaishi, H. Kanda, and S. Yamaoka, “Synthesis of Diamond from Graphite-Carbonate Systems under Very High Temperature and Pressure,” J. Cryst. Growth 104, 578–581 (1990).

    Article  Google Scholar 

  151. 151.

    M. Akaishi, “Non-Metallic Catalysts for Synthesis of High Pressure, High Temperature Diamond,” Diamond Relat. Mater. 2, 183–189 (1993).

    Article  Google Scholar 

  152. 152.

    Yu. N. Pal’yanov, A. G. Sokol, Yu. M. Borzdov, A. F. Khokhriakov, et al., “The Diamond Growth from Li2CO3, Na2CO3, K2CO3 and Cs2CO3 Solvent-Catalysts at P = 7 GPa and T = 1700−1750°C,” Diamond Relat. Mater. 8, 1118–1124 (1999).

    Article  Google Scholar 

  153. 153.

    H. Kanda, M. Akaishi, and S. Yamaoka, “Morphology of Synthetic Diamonds Grown from Na2CO3 Solvent-Catalyst,” J. Cryst. Growth 106, 471–475 (1990).

    Article  Google Scholar 

  154. 154.

    K. Sato, M. Akaishi, and S. Yamaoka, “Spontaneous Nucleation of Diamond in the System MgCO3-CaCO3-C at 7.7 GPa,” Diamond Relat. Mater. 8, 1900–1905 (1999).

    Article  Google Scholar 

  155. 155.

    A. G. Sokol, Yu. M. Borzdov, A. F. Khokhryakov, and N. V. Sobolev, “An Experimental Demonstration of Diamond Formation in the Dolomite-Carbon and Dolomite-Fluid-Carbon Systems,” Eur. J. Mineral. 13, 893–900 (2001).

    Article  Google Scholar 

  156. 156.

    T. Taniguchi, D. Dobson, A. P. Jones, et al., “Synthesis of Cubic Diamond in the Graphite-Magnesium Carbonate and Graphite-K2Mg(CO3)2 Systems at High Pressure of 9–10 GPa Region,” J. Mater. Res. 11(10), 2622–2632 (1996).

    Article  Google Scholar 

  157. 157.

    Yu. A. Litvin, L. T. Chudinovskikh, and V. A. Zharikov, “Experimental Crystallization of Diamond and Graphite from Alkali-Carbonate Melts at 7–11 GPa,” Dokl. Earth Sci. 355(5), 908–911 (1997).

    Google Scholar 

  158. 158.

    Yu. A. Litvin, L. T. Chudinovskikh, G. V. Saparin, et al., “Diamonds of New Alkaline Carbonate-Graphite HP-Syntheses: SEM Morphology, CCL-SEM and CL Spectroscopy Studies,” Diamond Relat. Mater. 8, 267–272 (1999).

    Article  Google Scholar 

  159. 159.

    Yu. A. Litvin, L. T. Chudinovskikh, and V. A. Zharikov, “Crystallization of Diamond in the Na2Mg(CO3)2-K2Mg(CO3)2-C System at 8–10 GPa,” Dokl. Earth Sci. 359(5), 433–435 (1998).

    Google Scholar 

  160. 160.

    Yu. A. Litvin, K. A. Aldushin, and V. A. Zharikov, “Synthesis of Diamond in the K2Ca(CO3)2-Na2Ca(CO3)2-C System Corresponding to Compositions of Fluid-Carbonatite Inclusions in Diamond from Kimberlites at 8.5–9.5 GPa.” Dokl. Earth Sci. 367, 801–805 (1999).

    Google Scholar 

  161. 161.

    Yu. N. Pal’yanov, A. G. Sokol, Yu. M. Borzdov, A. F. Khokhriakov, and N. V. Sobolev, “Diamond Formation from Mantle Carbonate Fluids,” Nature 400, 417–418 (1999).

    Article  Google Scholar 

  162. 162.

    Yu. N. Pal’yanov, A. G. Sokol, Yu. M. Borzdov, and N. V. Sobolev, “Experimental Studies of Diamond Crystallization in the Carbonate-Carbon Systems in Relation with a Problem of Diamond Genesis in Magmatic and Metamorphic Rocks,” Geol. Geofiz. 39(12), 1780–1792 (1998).

    Google Scholar 

  163. 163.

    Yu. N. Pal’yanov, A. G. Sokol, Yu. M. Borzdov, and A. F. Khokhryakov, “Fluid-Bearing Alkaline Carbonate Melts as the Medium for the Formation of Diamonds in the Earth’s Mantle: An Experimental Study,” Lithos 60, 145–159 (2002).

    Article  Google Scholar 

  164. 164.

    M. Arima, K. Nakayama, M. Akaishi, et al., “Crystallization of Diamond from Silicate Melt of Kimberlite Composition in High-Pressure High-Temperature Experiments,” Geology 21, 968–970 (1993).

    Article  Google Scholar 

  165. 165.

    Yu. A. Litvin and V. A. Zharikov, “Experimental Modeling of Diamond Genesis: Diamond Crystallization in Multicomponent Carbonate-Silicate Melts at 5—7 GPa and 1200–1570°C,” Dokl. Earth. Sci. 372, 867–870 (2000).

    Google Scholar 

  166. 166.

    Yu. M. Borzdov, A. G. Sokol, Yu. N. Pal’yanov, et al., “The Study of Diamond Crystallization from Alkaline Silicate, Carbonate, and Carbonate-Silicate Melts,” Dokl. Earth Sci. 366, 578–581 (1999).

    Google Scholar 

  167. 167.

    Yu. A. Litvin, V. G. Butvina, A. V. Bobrov, and V. A. Zharikov, “The First Synthesis of Diamond in Sulfide-Carbon Systems: The Role of Sulfides in Diamond Genesis,” Dokl. Earth Sci. 382, 40–43 (2002).

    Google Scholar 

  168. 168.

    A. G. Sokol, Yu. N. Pal’yanov, Pal’yanova, C. A., A. F. Khokhryakov, and Yu. M. Borzdov, “Diamond and Graphite Crystallization from C-O-H Fluids under High Pressure and High Temperature Conditions,” Diamond Relat. Mater. 10, 2131–2136 (2001).

    Article  Google Scholar 

  169. 169.

    Yu. A. Litvin, “Alkaline-Chloride Components in Processes of Diamond Growth in the Mantle and High-Pressure Experimental Conditions,” Dokl. Earth Sci. 398A, 388–391 (2003).

    Google Scholar 

  170. 170.

    Yu. A. Litvin and V. A. Zharikov, “Primary Fluid-Carbonatite Inclusions in Diamond: Experimental Modeling in the System K2O-Na2O-CaO-MgO-FeO-CO2 as a Diamond Formation Medium at 7–9 GPa,” Dokl. Earth Sci. 367, 801–805 (1999).

    Google Scholar 

  171. 171.

    A. V. Spivak, Candidate’s Dissertation in Geology and Mineralogy (Moscow, 2005).

  172. 172.

    A. V. Shushkanova and Yu. A. Litvin, “Diamond Formation in Sulfide Pyrrhotite-Carbon Melts: Experiments at 6.0–7.1 GPa and Application to Natural Conditions,” Geochem. Int., 46, 37–47 (2008).

    Article  Google Scholar 

  173. 173.

    S. N. Shilobreeva, A. A. Kadik, V. G. Senin, et al., “Experimental Study of Carbon Solubility in the Forsterite Crystals and Basaltic Melt at Pressure of 25–50 kbar and Temperature 1700–1800°C,” Geokhimiya, No. 1, 136–141 (1990).

  174. 174.

    R. H. Wentorf, “Solutions of Carbon at High Pressure,” Ber. Bunsenges. 70, 975–982 (1966).

    Google Scholar 

  175. 175.

    A. I. Chepurov and V. M. Sonin, “Carbon Crystallization in the Silicate and Metal-Silicate Systems at High Pressures,” Geol. Geofiz., No. 10, 78–81 (1987).

  176. 176.

    M. Akaishi, “Effect of Na2O and H2O Addition to SiO2 on the Synthesis of Diamond from Graphite,” in Proceedings of the 3rd NIRIM International Symposium on Advanced Materials (ISAMO96), Tsukuba, Ibaraki, Japan, 1996 (Tsukuba, 1996), pp. 75–80.

  177. 177.

    Yu. A. Litvin, “The Physicochemical Conditions of Diamond Formation in the Mantle Materials: Experimental Studies,” Russ. Geol. Geophys. 50(12), 1188–1200 (2009).

    Article  Google Scholar 

  178. 178.

    Yu. A. Litvin and A. V. Spivak, “Rapid Growth of Diamondite at the Contact between Graphite and Carbonate Melt: Experiments at 7.5–8.5 GPa,” Dokl. Earth Sci. 391, 888–891 (2003).

    Google Scholar 

  179. 179.

    G. Kurat and G. Dobosi, “Garnet and Diopside-Bearing Diamondites (Framesites),” Mineral. Petrol. 69, 143–159 (2000).

    Article  Google Scholar 

  180. 180.

    Yu. A. Litvin, A. P. Jones, A. D. Beard, et al., “Crystallization of Diamond and Syngenetic Minerals in Melts of Diamondiferous Carbonatites of the Chagatai Massif, Uzbekistan: Experiment at 7.0 GPa,” Dokl. Earth Sci. 381, 1066–1069 (2001).

    Google Scholar 

  181. 181.

    Yu. A. Litvin, G. Kurat, and G. Doboshi, “Experimental Study of Diamond Formation in Carbonate-Silicate Melts: A Model Approach to Natural Processes,” Russ. Geol. Geophys. 46(12), 1285–1298 (2005).

    Google Scholar 

  182. 182.

    Yu. N. Pal’yanov, V. S. Shatskii, A. G. Sokol, et al., “Crystallization of Metamorphic Diamond: An Experimental Modeling,” Dokl. Earth Sci. 381, 935–938 (2001).

    Google Scholar 

  183. 183.

    Yu. A. Litvin, A. V. Spivak, and Yu. A. Matveev, “Experimental Study of Diamond Formation in the Molten Carbonate-Silicate Rocks of the Kokchetav Metamorphic Complex at 5.5–7.5 GPa,” Geochem. Int. 4111, 1090–1098 (2003).

    Google Scholar 

  184. 184.

    A. F. Shatskii, Yu. M. Borzdov, A. G. Sokol, and Yu. N. Pal’yanov, “Phase Formation and Diamond Crystallization in Carbon-Bearing Ultrapotassium Carbonate-Silicate Systems,” Russ. Geol. Geofiz. 43(10), 940–950 (2002).

    Google Scholar 

  185. 185.

    Yu. N. Pal’yanov, A. G. Sokol, and N. V. Sobolev, “Experimental Modeling of Mantle Diamond-Forming Processes,” Russ. Geol. Geofiz. 46(12), 1271–1283 (2005).

    Google Scholar 

  186. 186.

    V. Yu. Litvin, Yu. A. Litvin, and A. A. Kadik, “Diamond Syntheses from Silicate-Carbonate-Carbon Melts at 6–8.5 GPa: Limits of Diamond Formation and Forms of Dissolved Carbon,” Exp. Geosci. 11(1), 28–31 (2003).

    Google Scholar 

  187. 187.

    Yu. N. Pal’yanov, A. G. Sokol, Yu. M. Borzdov, A. F. Khokhryakov, and N. V. Sobolev, “Diamond Formation through Carbonate-Silicate Interaction,” Am. Mineral. 87, 1009–1013 (2002).

    Google Scholar 

  188. 188.

    M. Arima, Y. Kozai, and M. Akaishi, “Diamond Nucleation and Growth by Reduction Carbonate Melts under High-Pressure and High-Temperature Conditions,” Geology 30, 691–694 (2002).

    Article  Google Scholar 

  189. 189.

    S. Yamaoka, M. D. Shaji Kumar, H. Kanda, and M. Akaishi, “Formation of Diamond from CaCO3 in a Reduced C-O-H Fluid at HP-HT,” Diamond Relat. Mater. 11, 1496–1504 (2002).

    Article  Google Scholar 

  190. 190.

    M. Akaishi, H. Kanda, and S. Yamaoka, “High Pressure Synthesis of Diamond in the Systems of Graphite-Sulfate and Graphite-Hydroxide,” Jap. J. App. Phys. 29, L1172–1174 (1990).

    Article  Google Scholar 

  191. 191.

    S. M. Hong, “Nucleation of Diamond in the System of Carbon and Water under Very High Pressure and Temperature,” J. Cryst. Growth 200, 326–328 (1999).

    Article  Google Scholar 

  192. 192.

    M. D. Shaji Kumar, M. Akaihi, and S. Yamaoka, “Formation of Diamond from Supercritical H2O-CO2 Fluid at High Pressure and High Temperature,” J. Cryst. Growth 213, 203–206 (2000).

    Article  Google Scholar 

  193. 193.

    M. D. Shaji Kumar, M. Akaihi, and S. Yamaoka, “Effect of Fluid Concentration on the Formation of Diamond in the H2O-CO2-Graphite System under HP-HT Conditions,” J. Cryst. Growth 222, 9–13 (2001).

    Article  Google Scholar 

  194. 194.

    M. Akaishi, M. D. Shaji Kumar, H. Kanda, and S. Yamaoka, “Reactions between Carbon and Reduced C-O-H Fluid under Diamond-Stable HP-HT Conditions,” Diamond. Relat. Mater. 10, 2125–2130 (2001).

    Article  Google Scholar 

  195. 195.

    S. Yamaoka, M. D. Shaji Kumar, M. Akaishi, and H. Kanda, “Reactions between Carbon and Water under Diamond-Stable High Pressure and High Temperature Conditions,” Diamond Relat. Mater. 9, 1480–1486 (2000).

    Article  Google Scholar 

  196. 196.

    S. Yamaoka, M. D. Shaji Kumar, H. Kanda, and M. Akaishi, “Crystallization of Diamond from CO2 Fluid at High Pressure and High Temperature,” J. Cryst. Growth 234, 5–8 (2002).

    Article  Google Scholar 

  197. 197.

    M. Akaishi and S. Yamaoka, “Crystallization of Diamond from C-O-H Fluids under High-Pressure and High-Temperature Conditions,” J. Cryst. Growth 209, 999–1003 (2000).

    Article  Google Scholar 

  198. 198.

    E. M. Galimov, A. M. Kudin, V. N. Skorobogatskii, et al., “Experimental Corroboration of the Synthesis of Diamond in the Cavitation,” Dokl. Phys. 49, 150–153 (2004).

    Article  Google Scholar 

  199. 199.

    E. Tomlinson, A. Jones, and J. Milledge, “High-Pressure Experimental Growth of Diamond Using C-K2CO3-KCl as an Analogue for Cl-Bearing Carbonate Fluid,” Lithos 77, 287–294 (2004).

    Article  Google Scholar 

  200. 200.

    Yu. N. Palyanov, V. S. Shatsky, N. V. Sobolev, and A. G. Sokol, “The Role of Mantle Ultrapotassic Fluids in Diamond Formation,” Proc. Natl. Acad. Sci. United States (2007). URL: http://www.pnas.org/cgi/doi/10.1073/pnas.0608134104.

  201. 201.

    A. I. Chepurov, “Role of Sulfide Melt in Natural Diamond Formation,” Geol. Geofiz., No. 8, 119–124 (1988).

  202. 202.

    K. V. Leont’evskii, V. A. Kirkinskii, and Zh. N. Fedorova, “Phase Relations of Iron and Nickel Sulfide Minerals at 6 GPa and 900°C,” Geol. Geofiz., No. 11, 88–95 (1992).

  203. 203.

    Yu. N. Pal’yanov, Yu. M. Borzdov, I. Yu. Ovchinnikov, and N. V. Sobolev, “Experimental Study of the Interaction between Pentlandite Melt and Carbon at Mantle PT Parameters: Condition of Diamond and Graphite Crystallization,” Dokl. Earth Sci. 392, 1026–1029 (2003).

    Google Scholar 

  204. 204.

    Yu. N. Pal’yanov, Yu. M. Borzdov, A. F. Khokhryakov, I. N. Kupriyanov, and N. V. Sobolev, “Sulfide Melts-Graphite Interaction at HPHT Conditions: Implications for Diamond Genesis,” Earth Planet. Sci. Lett. 250, 269–280 (2006).

    Article  Google Scholar 

  205. 205.

    A. V. Shushkanova and Yu. A. Litvin, “Formation of Diamond Polycrystals in Pyrrhotite-Carbonic Melt: Experiments at 6.7 GPa,” Dokl. Earth Sci. 409, 916–920 (2006).

    Article  Google Scholar 

  206. 206.

    Yu. N. Pal’yanov, Yu. M. Borzdov, Yu. V. Bataleva, A. G. Sokol, G. N. Pal’yanova, and I. N. Kupriyanov, “Reducing Role of Sulfides and Diamond Formation in the Earth’s Mantle,” Earth Planet. Sci. Lett. 260, 242–256 (2007).

    Article  Google Scholar 

  207. 207.

    Yu. A. Litvin, V. Yu. Litvin, and A. A. Kadik, “Experimental Characterization of Diamond Crystallization in Melts of Mantle Silicate-Carbonate-Carbon Systems at 7.0–8.5 GPa,” Geochem. Int. 46, 531–553 (2008).

    Article  Google Scholar 

  208. 208.

    Yu. A. Litvin and A. V. Bobrov, “Experimental Study of Diamond Crystallization in Carbonate-Peridotite Melts at 8.5 GPa,” Dokl. Earth Sci. 422, 1167–1171 (2008).

    Article  Google Scholar 

  209. 209.

    A. V. Bobrov and Yu. A. Litvin, “Peridotite-Eclogite-Carbonatite Systems at 7.0–8.5 GPa: Concentration Barrier of Diamond Nucleation and Syngenesis of Its Silicate and Carbonate Inclusions,” Russ. Geol. Geofiz. 50(12), 1221–1223 (2009).

    Article  Google Scholar 

  210. 210.

    Yu. A. Litvin and V. G. Butvina, “Diamond-Forming Media in the System Eclogite-Carbonatite-Sulfide-Carbon: Experiments at 6.0–8.5 GPa,” Petrology 12, 377–387 (2004).

    Google Scholar 

  211. 211.

    C. C. Bradley, High-Pressure Methods in Solid State Research (Butterworths, London, 1969).

    Google Scholar 

  212. 212.

    M. Eremets, High Pressure Experimental Methods (Univ. Press, Oxford-New York-Tokyo, Oxford, 1996).

    Google Scholar 

  213. 213.

    L. G. Khvostantsev, L. F. Vereshchagin, and A. P. Novikov, “Device of Toroid Type for High Pressure Generation,” High Temperature-High Pressure, No. 9, 637–639 (1977).

  214. 214.

    Yu. A. Litvin, Physicochemical Studies of Melting of Deep Materials of the Earth (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  215. 215.

    D. L. Hamilton and C. M. B. Henderson, “The Preparation of Silicate Compositions by a Gelling Method,” Mineral. Mag. 36, 832–838 (1968).

    Article  Google Scholar 

  216. 216.

    A. V. Bobrov, Yu. A. Litvin, L. Bindi, and A. M. Dymshits, “Phase Relations and Formation of Sodium-Rich Majoritic Garnet in the System Mg3Al2Si3O12-Na2MgSi5O12 at 7.0 and 8.5 GPa,” Contrib. Mineral. Petrol. 156, 243–257 (2008).

    Article  Google Scholar 

  217. 217.

    C. G. Homan, “Phase Diagram of Bi up to 140 kbars,” J. Phys. Chem. Solids 36, 1249–1254 (1975).

    Article  Google Scholar 

  218. 218.

    S. Akimoto, T. Yagi, Y. Ida, et al., “High-Pressure X-Ray Diffraction Study of Barium up to 130 kbar,” High Temp.-High Press 7, 287–294 (1975).

    Google Scholar 

  219. 219.

    C. S. Kennedy and G. C. Kennedy, “The Equilibrium Boundary between Graphite and Diamond,” J. Geophys. Res. 81, 2467–2470 (1976).

    Article  Google Scholar 

  220. 220.

    A. V. Spivak and Yu. A. Litvin, “Diamond Synthesis in Multicomponent Carbonate-Carbon Melts of Natural Chemistry: Elementary Process and Properties,”. Diamond Relat. Mater. 13, 482–487 (2004).

    Article  Google Scholar 

  221. 221.

    K. D. Litasov and E. Ohtani, “Phase Relations in the Peridotite-Carbonate-Chloride System at 7.0–16.5 GPa and the Role of Chlorides in the Origin of Kimberlite and Diamond,” Chem. Geol. 262, 29–41 (2009).

    Article  Google Scholar 

  222. 222.

    L. Bindi, A. Bobrov, and Yu. A. Litvin, “Incorporation of Fe3+ in Phase-X, A2−xM2Si2O7Hx, a Potential High-Pressure K-Rich Hydrous Silicate in the Mantle,” Mineral. Mag. 71(3), 265–272 (2007).

    Article  Google Scholar 

  223. 223.

    A. E. Ringwood, Composition and Petrology of the Earth’s Mantle (McGraw-Hill, New York, 1975).

    Google Scholar 

  224. 224.

    F. R. Boyd and R. V. Danchin, “Lherzolites, Eclogites, and Megacrysts from Some Kimberlites of Angola,” Am. J. Sci. 280(2), 528–549 (1980).

    Google Scholar 

  225. 225.

    I. Martinez, J. Zhang, and R. J. Reeder, “In Situ X-Ray Diffraction of Aragonite and Dolomite at High Temperature: Evidence for Dolomite Breakdown to Aragonite and Magnesite,” Am. Mineral. 81, 611–624 (1996).

    Google Scholar 

  226. 226.

    L. N. Kogarko, C. M. B. Henderson, and H. Pacheco, “Primary Ca-Rich Carbonatite Magma and Carbonate-Silicate-Sulphide Liquid Immiscibility in the Upper Mantle,” Contrib. Mineral. Petrol. 121, 267–274 (1995).

    Article  Google Scholar 

  227. 227.

    Yu. A. Litvin and A. V. Spivak, “Growth of Diamond Crystals at 5.5-8.5 GPa in the Carbonate-Carbon Melt-Solutions, the Chemical Analogs of Natural Diamond-Forming Media,” Materialovedenie, No. 3, 27–34 (2004).

  228. 228.

    M. B. Baker and P. J. Wyllie, “Liquid Immiscibility in a Nepheline-Carbonate System at 25 kbar and Implications for Karbonatite Origin,” Nature 346, 168–177 (1990).

    Article  Google Scholar 

  229. 229.

    A. V. Bobrov, H. Kojitani, M. Akaogi, and Yu. A. Litvin, “Phase Relations on the Diopside-Hedenbergite-Jadeite Join up to 24 GPa and Stability of Na-Bearing Majoritic Garnet,” Geochim. Cosmochim. Acta 72, 2392–2408 (2008).

    Article  Google Scholar 

  230. 230.

    V. G. Butvina and Yu. A. Litvin, “Garnets in the Forsterite-Diopside-Jadeite System: Disturbance of the Liquidus Peridotite-Eclogite Barrier during Differentiation of Mantle Magmas in Experiments at 7.0 GPa,” Vestnik Otd. Nauk Zemle, 1(26), 2008. URL: http://www.sngis.ru/russian/cp1251/h_dgggms/1-2008/infirmbul-1_2008/term-2.df.

  231. 231.

    A. V. Spivak, Yu. A. Litvin, and F. K. Divaev, “Syngenetic Relations of Diamond, Silicate, and Carbonate Minerals in the Carbonatite-Carbon System at 8.5 GPa,” Vestnik Otd. Nauk Zemle, 1(26), 2008. URL: http://www.sngis.ru/russian/cp1251/h-dgggms/1-2008/infirmbul-1_2008/term-12.df.

  232. 232.

    I. D. Ryabchikov and A. V. Girnis, “Genesis of Low-Calcium Kimberlite Magmas,” Russ. Geol. Geophys. 46(12), 1201–1212 (2005).

    Google Scholar 

  233. 233.

    J. Konzett and S. L. Japel, “High P-T Phase Relations and Stability of a (21)-Hydrous Clinopyribole in the System K2O-Na2O-CaO-MgO-Al2O3-SiO2-H2O: An Experimental Study to 18 GPa,” Am. Mineral. 88, 1073–1083 (2003).

    Google Scholar 

  234. 234.

    R. W. Luth, “Experimental Study of the System Phlogopite-Diopside from 3.5 to 17 GPa,” Am. Mineral. 82, 1198–1209 (1997).

    Google Scholar 

  235. 235.

    J. Konzett and P. Ulmer, “The Stability of Hydrous Potassic Phases in Lherzolitic Mantle-An Experimental Study to 9.5 GPa in Simplified and Natural Bulk Compositions,” J. Petrol. 40, 629–652 (1999).

    Article  Google Scholar 

  236. 236.

    J. Konzett and Y. Fei, “Transport and Storage of Potassium in the Earth’s Upper Mantle and Transition Zone: An Experimental Study to 23 GPa in Simplified and Natural Bulk Compositions,” J. Petrol. 41, 583–603 (2000).

    Article  Google Scholar 

  237. 237.

    R. G. Trønnes, “Stability Range and Decomposition of Potassic Richterite and Phlogopite End Members at 5–15 GPa,” Mineral. Petrol. 74, 129–148 (2002).

    Article  Google Scholar 

  238. 238.

    F. Mancini, G. E. Harlow, and C. L. Cahill, “Crystal Structure of Potassium Dimagnesium Disilicate Hydroxide, K1.3(Mg0.95Al0.03Cr0.02)2Si2O6.4(OH)0.6,” Zeitschrift Kristall. 216, 189–190 (2001).

    Google Scholar 

  239. 239.

    F. Mancini, G. E. Harlow, and C. L. Cahill, “The Crystal Structure and Cation Ordering of Phase-X (K1 − x − n)2(Mg1 − n[Al,Cr]n)2Si2O7H2x: A Potential K- and H-Bearing Phase in the Mantle,” Am. Mineral. 87, 302–306 (2002).

    Google Scholar 

  240. 240.

    H. Yang, J. Konzett, and C. W. Prewitt, “Crystal Structure of Phase X, a High Pressure Alkali-Rich Hydrous Silicate and Its Anhydrous Equivalent,” Am. Mineral. 86, 1483–1488 (2001).

    Google Scholar 

  241. 241.

    A. A. Marakushev and A. V. Bobrov, “Specific Features of Crystallization of Eclogite Magmas at Diamond-Facies Depths,” Dokl. Earth Sci. 358, 142–145 (1998).

    Google Scholar 

  242. 242.

    A. V. Bobrov, A. M. Dymshits, and Yu. A. Litvin, “Conditions of Magmatic Crystallization of Na-Bearing Majoritic Garnets in the Earth Mantle: Evidence from Experimental and Natural Data,” Geochem. Int. 47, 951–965 (2009).

    Article  Google Scholar 

  243. 243.

    A. D. Djuraev and F. K. Divaev, “Melanocratic Carbonatites—New Type of Diamond Bearing Rocks, Uzbekistan,” in Mineral Deposits: Processes to Processing, Ed. by S. J. Stanley (Balkema, Rotterdam, 1999), pp. 639–642.

    Google Scholar 

  244. 244.

    A. V. Bobrov, Yu. A. Litvin, and F. K. Divaev, “Phase Relations in Carbonate-Silicate Rocks from Diatremes of the Chagatai Complex, Western Uzbekistan: An Experimental Study,” Dokl. Earth Sci. 383, 267–270 (2002).

    Google Scholar 

  245. 245.

    A. V. Bobrov, Yu. A. Litvin, and F. K. Divaev, “Phase Relations and Diamond Synthesis in the Carbonate-Silicate Rocks of the Chagatai Complex, Western Uzbekistan: Results of Experiments at P = 4−7 GPa and T = 1200–1700°C,” Geokhimiya, 42, 39–48 (2004).

    Google Scholar 

  246. 246.

    N. V. Sobolev, A. I. Botkunov, and I. K. Kuznetsova, “Diamondiferous Eclogite with Ca-Rich Garnet from the Mir Pipe, Yakutia,” Geol. Geofiz., No. 4, 27–36 (1969).

  247. 247.

    A. I. Ponomarenko, N. V. Sobolev, N. P. Pokhilenko, et al., “Diamondiferous Grospyditite and Diamondiferous Disthene Eclogites from the Udachnaya Pipe, Yakutia, Yakutiya,” Dokl. Akad. Nauk SSSR 226(4), 927–930 (1976).

    Google Scholar 

  248. 248.

    G. Brey, L. N. Kogarko, and I. D. Ryabchikov, “Carbon Dioxide in Kimberlite Melts,” N. Jb. Miner. Mh. 4, 159–168 (1991).

    Google Scholar 

  249. 249.

    A. V. Lapin, F. K. Divaev, and Yu. A. Kostitsyn, “Petrochemical Interpretation of Carbonatite-Like Rocks from the Chagatai Complex of the Tien Shan with Application to the Problem of Diamond Potential,” Petrology 13(5), 499–511 (2005).

    Google Scholar 

  250. 250.

    A. A. Frolov, A. V. Lapin, A. V. Tolstov, et al., Carbonatites and Kimberlites: Relations, Metallogeny, and Prediction (NIA-Priroda, Moscow, 2005) [in Russian].

    Google Scholar 

  251. 251.

    T. G. Shumilova, “Carbonatites of Fuerteventura Island, Canary Archipelago, as a Specific type of Diamond-Bearing Rocks,” in Problems of Geology and Mineralogy, Ed. by A. M. Pystin (Geoprint, Syktyvkar, 2006), pp. 248–261 [in Russian].

    Google Scholar 

  252. 252.

    M.-L. Frezzotti and A. Peccerillo, “Diamond-Bearing COHS Fluids in the Mantle beneath Hawaii,” Earth Planet. Sci. Lett. 262, 273–283 (2007).

    Article  Google Scholar 

  253. 253.

    A. G. Doroshkevich, F. Wall, and G. S. Ripp, “Magmatic Graphite in Dolomite Carbonatite at Pogranichnoe, North Transbaikalia, Russia,” Contrib. Mineral. Petrol. 153, 339–353 (2007).

    Article  Google Scholar 

  254. 254.

    O. G. Safonov, Yu. A. Litvin, L. L. Perchuk, et al., “Phase Relations of Potassium-Bearing Clinopyroxene in the System CaMgSi2O6-KAlSi2O6 at 7 GPa,” Contrib. Mineral. Petrol. 146, 120–133 (2003).

    Article  Google Scholar 

  255. 255.

    O. G. Safonov, L. L. Perchuk, Yu. A. Litvin, and L. Bindi, “Phase Relations in the CaMgSi2O6-KAlSi3O8 Join at 6 and 3.5 GPa as a Model for Formation of Some Potassium-Bearing Deep-Seated Mineral Assemblages,” Contrib. Mineral. Petrol. 149, 316–337 (2005).

    Article  Google Scholar 

  256. 256.

    A. V. Bobrov, A. M. Dymshits, and Yu. A. Litvin, “The Pyrope Mg3Al2Si3O12-Jadeite NaAlSi2O6 System: An Experimental Study at 7.0 and 8.5 GPa and 1300–1900°C,” Dokl. Earth Sci. 426, 672–676 (2009).

    Article  Google Scholar 

  257. 257.

    T. Gasparik, “Transformation of Enstatite-Diopside-Jadeite Pyroxenes to Garnet,” Contrib. Mineral. Petrol. 102, 389–405 (1989).

    Article  Google Scholar 

  258. 258.

    T. Gasparik and Yu. A. Litvin, “Stability of Na2Mg2Si2O7 and Melting Relations in the Forsterite-Jadeite Join at Pressures up to 22 GPa,” Eur. J. Mineral. 9, 311–326 (1997).

    Google Scholar 

  259. 259.

    R. J. Angel, T. Gasparik, N. L. Ross, et al., “A Silica-Rich Sodium Pyroxene Phase with Six-Coordinated Silicon,” Nature 335, 156–158 (1988).

    Article  Google Scholar 

  260. 260.

    A. M. Dymshits, A. V. Bobrov, K. D. Litasov, et al., “Experimental Study of the Pyroxene-Garnet Phase Transition in the Na2MgSi5O12 System at Pressures of 13–20 GPa: First Synthesis of Sodium Majorite,” Dokl. Earth Sci. 434, 1263–1266 (2010).

    Article  Google Scholar 

  261. 261.

    L. Bindi, A. M. Dymshits, A. V. Bobrov, et al., “Crystal Chemistry of Sodium in the Earth’s Interior: The Structure of Na2MgSi5O12 Synthesized at 17.5 GPa and 1700°C,” Am. Mineral. 96, 447450 (2011).

    Google Scholar 

  262. 262.

    A. Dymshits, V. Vinograd, N. Paulsen, B. Winkler, L. Perchuk, and A. Bobrov, “Simulation Study of Na-Majorite,” in Geophys. Res. Abstr. (Vienna, 2009), vol. 11, EGU2009-3218, 2009.

  263. 263.

    H. O. A. Meyer and M. E. McCallum, “Mineral Inclusions in Diamonds from the Sloan Kimberlites, Colorado,” J. Geol. 94(4), 600–612 (1986).

    Article  Google Scholar 

  264. 264.

    P. J. Wyllie and W. L. Huang, “Carbonation and Melting Reactions in the System CaO-MgO-SiO2-CO2 at Mantle Pressures with Geophysical and Geological Applications,” Contrib. Mineral. Petrol. 54, 79–107 (1976).

    Article  Google Scholar 

  265. 265.

    G. P. Brey, W. R. Brice, D. J. Ellis, et al., “Pyroxene-Carbonate Reactions in the Upper Mantle,” Earth Planet. Sci. Lett. 62, 63–74 (1983).

    Article  Google Scholar 

  266. 266.

    A. V. Spivak, Yu. A. Litvin, A. V. Shushkanova, et al., “Diamond Formation in Carbonate-Silicate-Sulfide-Carbon Melts: Raman- and IR-Microspectroscopy,” Eur. J. Mineral. 20(3), 341–347 (2008).

    Article  Google Scholar 

  267. 267.

    M. B. Kirkley, J. J. Gurney, M. L. Otter, et al., “The Application of C in Diamonds: A Review,” Appl. Geochem. 6, 447–494 (1991).

    Article  Google Scholar 

  268. 268.

    N. V. Sobolev, E. M. Galimov, I. N. Ivanovskaya, and E. S. Efimova, “Carbon Isotope Composition of Diamonds with Crystalline Inclusions,” Dokl. Akad. Nauk SSSR 249(5), 1217–1220 (1979).

    Google Scholar 

  269. 269.

    E. M. Galimov, “Variations in Isotope Composition of Diamond with Applications to the Conditions of Diamond Formation,” Geokhimiya, No. 8, 1091–1118 (1984).

  270. 270.

    E. M. Galimov, “Isotope Fractionation Related to Kimberlite Magmatism and Diamond Formation,” Geochim. Cosmochim. Acta 55(6), 1697–1708 (1991).

    Article  Google Scholar 

  271. 271.

    P. Cartigny, “Stable Isotopes and the Origin of Diamond,” Elements 1(2), 79–84 (2005).

    Article  Google Scholar 

  272. 272.

    Yu. A. Litvin, F. Pineau, and M. Javoy, “Carbon Isotope Fractionation on Diamond Synthesis in Carbonate-Carbon Melts of Natural Chemistry (Experiments at 6.5–7.5 GPa),” in Abstracts of the 6th International Symposium on Applied Isotope Geochemistry, Prague, Czechia (Prague, 2005), p. 143.

  273. 273.

    G. P. Bulanova, A. V. Varshavskii, N. V. Leskova, and L. V. Nikishova, “Central Inclusions as Indicators of the Nucleation of Natural Diamonds,” in Physical Properties and Mineralogy of Natural Diamonds (Yakutsk, 1986), pp. 29–45 [in Russian].

  274. 274.

    M. Schrauder, C. Koeberl, and O. Navon, “Trace Element Analyses of Fluid-Bearing Diamonds from Jwaneng, Botswana,” Geochim. Cosmochim. Acta 60(23), 4711–4724 (1996).

    Article  Google Scholar 

  275. 275.

    I. D. Ryabchikov, G. P. Brey, and V. K. Bulatov, “Carbonatite Melts Equilibrium with Mantle Peridotites at 50 kbar,” Petrologiya 1(2), 189–194 (1993).

    Google Scholar 

  276. 276.

    I. Kushiro, Y. Syono, and S. Akimoto, “Melting of a Peridotite Nodule at High Pressures and High Water Pressures,” J. Geophys. Res. 73, 6023–6029 (1968).

    Article  Google Scholar 

  277. 277.

    M. E. Wallace and D. H. Green, “An Experimental Determination of Primary Carbonatite Magma Composition,” Nature 335, 343–346 (1988).

    Article  Google Scholar 

  278. 278.

    A. B. Thompson, “Water in the Earth’s Upper Mantle,” Nature 358, 295–302 (1992).

    Article  Google Scholar 

  279. 279.

    P. J. Wyllie, “Experimental Petrology of Upper-Mantle Materials, Process and Products,” J. Geodyn. 20(4), 429–468 (1995).

    Article  Google Scholar 

  280. 280.

    G. Delpech, M. Gregoire, S. Y. Reilly, et al., “Feldspar from Carbonate-Rich Silicate Metasomatism in the Shallow Oceanic Mantle under Kerguelen Islands (South Indian Ocean),” Lithos. 75, 209–237 (2004).

    Article  Google Scholar 

  281. 281.

    J. A. Dalton and B. J. Wood, “The Partitioning of Fe and Mg between Olivine and Carbonate and the Stability of Carbonate under Upper Mantle Conditions,” Contrib. Mineral. Petrol. 114, 501–509 (1993).

    Article  Google Scholar 

  282. 282.

    J. A. Dalton and D. C. Presnall, “The Continuum of Primary Carbonatitic-Kimberlitic Melt Compositions in Equilibrium with Lherzolite: Data Form the System CaO-MgO-Al2O3-SiO2-CO2 at 6 GPa,” J. Petrol. 39(11–12), 1953–1964 (1998).

    Article  Google Scholar 

  283. 283.

    K. R. Moore and B. J. Wood, “The Transition from Carbonate to Silicate Melts in the CaO-MgO-SiO2-CO2 System,” J. Petrol. 39(11–12), 1943–1951 (1998).

    Article  Google Scholar 

  284. 284.

    L. L. Perchuk and D. M. Lindsley, “Fluid-Magma Interaction at High Pressure-Temperature Conditions,” in High Pressure Research in Geophysics, Ed. by S. Akimoto and M. N. Maghnani, Advances of Earth’s and Planet Sciences (Special Issue) 22, 251–257 (1982).

  285. 285.

    Y. Thibault, A. D. Edgar, and F. E. Lloyd, “Experimental Investigation of Melts from a Carbonated Phlogopite Lherzolite: Implications for Metasomatism in the Continental Lithospheric Mantle,” Am. Mineral. 77, 784–794 (1992).

    Google Scholar 

  286. 286.

    R. J. Sweeney, “Carbonatite Melt Compositions in the Earth’s Mantle,” Earth Planet. Sci. Lett. 128, 259–270 (1994).

    Article  Google Scholar 

  287. 287.

    K. Bailey, S. Kearns, J. Mergoil, et al., “Extensive Dolomitic Volcanism through the Limagne Basin, Central France: A New Form of Carbonatite Activity,” Mineral. Mag. 70(2), 231–236 (2006).

    Article  Google Scholar 

  288. 288.

    N. I. Suk, “Experimental Study of Liquid Immiscibility in Silicate-Carbonate Systems,” Petrology 9(5), 477–486 (2001).

    Google Scholar 

  289. 289.

    E. van Achterbergh, W. L. Griffin, C. G. Ryan, et al., “Melt Inclusions from the Deep Slave Lithosphere: Implications for the Origin and Evolution of Mantle-Derived Carbonatite and Kimberlite,” Lithos. 76, 461–474 (2004).

    Article  Google Scholar 

  290. 290.

    E. Tomlinson, I. De Schrijver, K. De Corte, et al., “Trace Element Compositions of Submicroscopic Inclusions in Coated Diamond: A Tool for Understanding Diamond Petrogenesis,” Geochim. Cosmochim. Acta 69, 4719–4732 (2005).

    Article  Google Scholar 

  291. 291.

    Z. V. Spetsius, “Two Generations of Diamonds in Eclogite Xenoliths from Yakutia,” in Proceedings of the 7th International Kimberlite Conference, Cape Town, South Africa, 1999, Ed. by J. J. Gurney, J. L. Gurney, M. D. Pascoe, and S. H. Richardson (Red Roof Design, Cape Town, 1999), Vol. 2, pp. 823–828.

    Google Scholar 

  292. 292.

    A. A. Marakushev, O. B. Mitreikina, N. G. Zinov’eva, and L. B. Granovskii, “Diamond-Bearing Meteorites and Their Genesis,” Petrologiya 3(5), 3–21 (1995).

    Google Scholar 

  293. 293.

    A. V. Shushkanova and Yu. A. Litvin, “Phase Relations in Diamond-Forming Carbonate-Silicate-Sulfide Systems upon Melting,” Russ. Geol. Geofiz. 46(12), 1317–1326 (2005).

    Google Scholar 

  294. 294.

    A. G. Sokol and Yu. N. Pal’yanov, “Diamond Crystallization in Fluid and Carbonate-Fluid Systems under Mantle P-T Conditions: 2. An Analytical Review of Experimental Data,” Geochem. Int. 42, 1018–1032 (2004).

    Google Scholar 

  295. 295.

    M. Schrauder, O. Navon, D. Szafranek, et al., “Fluids in Yakutian and Indian Diamonds,” Mineral. Mag. 58A, 813–814 (1994).

    Article  Google Scholar 

  296. 296.

    A. A. Johannsen, Descriptive Petrography of the Igneous Rocks (University of Chicago, Chicago, 1931), Vol. 1, pp. 88–92.

    Google Scholar 

  297. 297.

    S. Ono and A. Yasuda, “Compositional Change of Majoritic Garnet in a MORB Composition from 7 to 17 GPa and 1400 to 1600 Degrees C,” Phys. Earth. Planet. Inter. 96, 171–179 (1996).

    Article  Google Scholar 

  298. 298.

    T. Kato, “Melting of Basalts of Middle-Oceanic Belts at High Pressures in Connection with Distribution of K, Sr, Pb, Th and U in Crystal-Liquid System,” J. Miner. Petrol. Econ. Geol. 84(9), 321–328 (1989).

    Google Scholar 

  299. 299.

    T. Gasparik, “Diopside-Jadeite Join at 16–22 GPa,” Phys. Chem. Minerals 23, 476–486 (1996).

    Article  Google Scholar 

  300. 300.

    K. Okamoto and S. Maruyama, “Multi-Anvil Re-Equilibration Experiments of a Dabie Shan Ultrahigh-Pressure Eclogite within the Diamond Stability Fields,” Island Arc 7, 52–69 (1998).

    Article  Google Scholar 

  301. 301.

    K. D. Collerson, S. Hapugoda, B. S. Kamber, and Q. Williams, “Rocks from the Mantle Transition Zone: Majorite-Bearing Xenoliths from Malaita, Southwest Pacific,” Science 288, 1215–1223 (2000).

    Article  Google Scholar 

  302. 302.

    K. D. Collerson, Q. Williams, B. S. Kamber, et al., “Majoritic Garnet: A New Approach to Pressure Estimation of Shock Events in Meteorites and the Encapsulation of Sub-Lithospheric Inclusions in Diamond,” Geochim. Cosmochim. Acta 74, 5939–5957 (2010).

    Article  Google Scholar 

  303. 303.

    S. K. Simakov and A. V. Bobrov, “Garnet-Pyroxene Barometry for the Assemblages with Na-Bearing Majoritic Garnet,” Dokl. Earth Sci. 420, 667–669 (2008).

    Article  Google Scholar 

  304. 304.

    L. F. Dobrzhinetskaya, H. W. Green II, A. P. Renfro, et al., “Precipitation of Pyroxenes and Mg2SiO4 from Majoritic Garnet: Simulation of Peridotite Exhumation from Great Depth,” Terra Nova 16, 325–330 (2004).

    Article  Google Scholar 

  305. 305.

    H. L. M. Van Roermund and M. R. Drury, “Ultra-High Pressure (P > 6GPa) Garnet Peridotites in Western Norway: Exhumation of Mantle Rocks from >185 km Depth,” Terra Nova 10, 295–301 (1998).

    Article  Google Scholar 

  306. 306.

    M. E. Fleet and G. S. Henderson, “Sodium Trisilicate—a New High-Pressure Silicate Structure [Na2Si(Si2O7)],” Phys. Chem. Minerals 22, 383–386 (1995).

    Article  Google Scholar 

  307. 307.

    T. Gasparik, J. B. Parise, B. A. Eiben, and J. A. Hriljac, “Stability and Structure of a New High-Pressure Silicate, Na1.8Ca1.1Si6O14,” Am. Mineral. 80, 1269–1276 (1995).

    Google Scholar 

  308. 308.

    M. E. Fleet, “Sodium Heptasilicate: A High-Pressure Silicate with Six-Membered Rings of Tetrahedra Interconnected by SiO6 Octahedra: [Na8Si(Si6O18)],” Am. Mineral. 83, 618–624 (1998).

    Google Scholar 

  309. 309.

    T. Gasparik, J. B. Parise, R. J. Reeder, et al., “Composition, Stability, and Structure of a New Member of the Aenigmatite Group, Na2Mg4 + xFe 3+2 − 2x Si6 + xO20, Synthesized at 13–14 GPa,” Am. Mineral. 84, 257–266 (1999).

    Google Scholar 

  310. 310.

    T. Gasparik, A. Tripathi, and J. B. Parise, “Structure of a New Al-Rich Phase, [K,Na]0.9[Mg,Fe]2 [Mg,Fe,Al,Si]6O12, Synthesized at 24 GPa,” Am. Mineral. 85, 613–618 (2000).

    Google Scholar 

  311. 311.

    H. Yang, J. Konzett, D. J. Frost, and R. T. Downs, “X-Ray Diffraction and Raman Spectroscopic Study of Clinopyroxenes with Six-Coordinated Si in the Na(Mg0.5Si0.5)Si2O6NaAlSi2O6 System,” Am. Mineral. 94, 942–949 (2009).

    Article  Google Scholar 

  312. 312.

    D. L. Anderson, “Chemical Stratification of the Mantle,” J. Geophys. Res. 84, 6297–6298 (1979).

    Article  Google Scholar 

  313. 313.

    Yu. A. Litvin, “Mantle Hot Spots and Experiment up to 10 GPa: Alkaline Reactions, Carbonatization of Lithosphere, and New Diamond-Forming Systems,” Geol. Geofiz. 39(12), 1772–1779 (1998).

    Google Scholar 

  314. 314.

    A. V. Girnis, V. K. Bulatov, and G. P. Brey, “Transition from Kimberlite to Carbonatite Melt under Mantle Parameters: An Experimental Study,” Petrology 13, 1–15 (2005).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Bobrov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bobrov, A.V., Litvin, Y.A. Mineral equilibria of diamond-forming carbonate-silicate systems. Geochem. Int. 49, 1267–1363 (2011). https://doi.org/10.1134/S0016702911130015

Download citation

Keywords

  • diamond
  • experiment
  • peridotite
  • eclogite
  • carbonatite
  • parental diamond-forming melt
  • majoritic garnet