Skip to main content
Log in

Contrasting geochemistry of magmatic and secondary zircons

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The intensity of the redistribution of trace elements in zircons significantly varies depending on the types of secondary processes affecting the magmatic rocks. The Neoarchean alkaline granites of the Keivy structure in the Kola Peninsula are employed as an illustrative example of differences in the variation dynamics of the proportions of certain elements (REE, Th, U, Hf, and others) with the transition from the magmatic to metamorphic crystallization of zircons during Proterozoic amphibolite-facies metamorphism over-printed onto the rocks. Changes are detected in the proportions of LREE and HREE, in the Ce4+/Ce3+ and Th/U ratios, and in other incompatible elements. The data obtained by geochemically comparing the redistribution of certain elements and their pairs in zircons during amphibolite-facies metamorphism and Phanerozoic hydrothermal alteration (literature data) are used to gain insight into the genesis of detrital Hadean zircons. Certain similarities and remarkable differences are detected in the effects of Hadean processes and Phanerozoic-Precambrian magmatism and secondary recrystallization on the behavior of chemical elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. O. Hoskin and T. R. Ireland, “Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator,” Geology 28(7), 627–630 (2000).

    Article  Google Scholar 

  2. P. W. O. Hoskin and L. P. Black, “Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon,” J. Metamorph. Geol. 18, 423–439 (2000).

    Article  Google Scholar 

  3. E. Pelleter, A. Cheilletz, D. Gasquet, et al., “Hydrothermal Zircons: A Tool for Ion Microprobe U-Pb Dating of Gold Mineralization (Tamlalt-Menhouhou Gold Deposit, Morocco),” Chem. Geol. 245, 135–161 (2007).

    Article  Google Scholar 

  4. A. A. Fedotova, E. V. Bibikova, and S. G. Simakin, “Ion-Microprobe Zircon Geochemistry as an Indicator of Mineral Genesis during Geochronological Studies,” Geokhimiya, No. 9, 980–997 (2008) [Geochem. Int. 46, 912–927 (2008)].

  5. W. H. Peck, J. W. Valley, S. A. Wilde, and C. M. Graham, “Oxygen Isotope Ratios and Rare Earth Elements in 3.3 to 4.4 Ga Zircons: Ion Microprobe Evidence for High δ18O Continental Crust and Oceans in the Early Archean,” Geochim. Cosmochim. Acta 65(22), 4215–4229 (2001).

    Article  Google Scholar 

  6. P. W. O. Hoskin, “Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia,” Geochim. Cosmochim. Acta 69(3), 637–648 (2005).

    Article  Google Scholar 

  7. Yu. A. Balashov, “Magmatism of the Hadean Geon in Earth Differentiation,” Dokl. Akad. Nauk 409(5), 639–642 (2006) [Dokl. Earth Sci. 409, 875–878 (2006)].

    Google Scholar 

  8. Yu. A. Balashov, D. R. Zozulya, and M. J. Timmerman, Archaean Peralkaline Granites of the Kola Peninsula, Russia, in Abstracts of ICOG-9, 1998 (Beijing, 1998), p. 5.

  9. V. R. Vetrin and N. V. Rodionov, “Geology and Geochronology of Neoarchean Anorogenic Magmatism of the Keivy Structure, Kola Peninsula,” Petrologiya 17(6), 578–600 (2009) [Petrology 17, 537–557 (2009)].

    Google Scholar 

  10. V. K. Smirnov, A. V. Sobolev, V. G. Batanova, et al., “Quantitative SIMS Analysis of Melt Inclusions and Host Minerals for Trace Elements and H2O,” Eos Trans. AGU 76(17), S. 270 (1995).

    Google Scholar 

  11. R. W. Hinton and B. G. J. Upton, “The Chemistry of Zircon: Variations within and between Large Crystals from Syenite and Alkali Basalt Xenoliths,” Geochim. Cosmochim. Acta 55, 3287–3302 (1991).

    Article  Google Scholar 

  12. P. W. O. Hoskin, “Minor and Trace Element Analysis of Natural Zircon (ZrSiO4) by SIMS and Laser Ablation ICPMS: a Consideration and Comparison of Two Broadly Competitive Techniques,” J. Trace Microprobe Tech. 16, 301–326 (1998).

    Google Scholar 

  13. W. F. McDonough and S. S. Sun, “The Composition of the Earth,” Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  14. Yu. A. Balashov, “Paleoproterozoic Geochronology of the Pechenga-Varzuga Structure, Kola Peninsula,” Petrologiya 4(1), 3–25 (1996) [Petrology 4, 1–22 (1996)].

    Google Scholar 

  15. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallogr. A32, 751–767 (1976).

    Google Scholar 

  16. M. J. Whitehouse and B. S. Kamber, “On the Overabundance of Light Earth Elements in Terrestrial Zircons and Its Implication for Earth’s Earliest Mantle Differentiation,” Tectonophysics 204, 333–346 (2002).

    Google Scholar 

  17. V. R. Vetrin, I. L. Kamenskii, T. B. Bayanova, et al., “Melanocratic Nodules in Alkaline Granites of the Ponoiskii Massif, Kola Peninsula: A Clue to Petrogenesis,” Geokhimiya, No. 11, 1178–1190 (1999) [Geochem. Int., 1061–1072 (1999)].

  18. E. A. Belousova, W. L. Griffin, S. Y. O’ Reilly, and N. I. Fisher, “Igneous Zircon: Trace Element Composition As An Indicator of Source Rock Type,” Contrib. Mineral Petrol 143, 602–622 (2002).

    Article  Google Scholar 

  19. Yu. A. Balashov, S. F. Karpenko, and L. V. Filippov, “Strontium, Neodymium, and Oxygen Isotopes and Rare Earth Elements as Indicators of Source and Evolution of Granitoid Magmatism,” Geokhimiya, No. 12, 1705–1717 (1982).

  20. Yu. A. Balashov and A. I. Tugarinov, “Abundance of Rare-Earth Elements in the Earth’s Crust: Evidence for Origin of Granites and Recent Sedimentary Rocks,” Geochem. J. 10, 103–106 (1976).

    Google Scholar 

  21. S. A. Wilde, J. W. Valley, W. H. Peck, and C. M. Graham, “Evidence from Detrital Zircons for the Existence of Continental Crust and Oceans on the Earth 4.4. Gyr Ago,” Nature 409, 175–178 (2001).

    Article  Google Scholar 

  22. A. P. Nutman, V. R. McGregor, C. R. L. Friend, et al., “The Itsaq Gneiss Complex of Southern West Greenland; the World’s Most Extensive Record of Early Crustal Evolution (3900–3600 Ma),” Precambrian Res. 78, 1–39 (1996).

    Article  Google Scholar 

  23. P. W. O. Hoskin and L. P. Black, “Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon,” J. Metamorph. Geol. 18, 423–439 (2000).

    Article  Google Scholar 

  24. F. A. Arzamastsev, L. V. Arzamastseva, A. V. Travin, et al., “Duration of Formation of Magmatic System of Polyphase Paleozoic Alkaline Complexes of the Central Kola: U-Pb, Rb-Sr, Ar-Ar Data,” Dokl. Akad. Nauk 413(5), 666–670 (2007) [Dokl. Earth Sci. 413, 432–436 (2007)].

    Google Scholar 

  25. S. J. Mojzsis, T. M. Harrison, and R. T. Pidgeon, “Oxygen-Isotope Evidence from Ancient Zircons for Liquid Water at the Earth’s Surface, 4.300 Ma Ago,” Nature 409, 178–181 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Balashov.

Additional information

Original Russian Text © Yu.A. Balashov, S.G. Skublov, 2011, published in Geokhimiya, 2011, Vol. 49, No. 6, pp. 622–634.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balashov, Y.A., Skublov, S.G. Contrasting geochemistry of magmatic and secondary zircons. Geochem. Int. 49, 594–604 (2011). https://doi.org/10.1134/S0016702911040033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702911040033

Keyword

Navigation