Skip to main content
Log in

Distal “impact” layers and global acidification of ocean water at the Cretaceous-Paleogene boundary (KPB)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The KPB sections at Højerup in Denmark, Agost and Caravaca in Spain and El Kef in Tunisia and (elsewhere in the world) consists of a very thin reddish biogenic calcite-poor smectite-rich “impact” layer overlain by a thicker smectite-rich marl. The massive amount of impact-generated atmospheric CO2 at KPB would have accumulated globally in the ocean surface, leading to acidification and CaCO3 undersaturation. These chemical changes would have induced a low biocalcification of calcareous plankton and a high dissolution of their shells. The biocalcification/dissolution crises may have played a significant role for the low abundance of biogenic calcite in the “impact” layer of the marine boundary clays at Højerup, Agost, Caravaca and El Kef (and elsewhere in the world). Experimental data and observations indicate that the deposition of the “impact” layer probably lasted only a few decades at most.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. W. Alvarez, W. Alvarez, F. Asaro, et al., “Extraterrestrial Cause for the Cretaceous-Tertiary Extinction,” Science 208, 1095–1108 (1980).

    Article  Google Scholar 

  2. F. T. Kyte, “A Meteorite from the Cretaceous/Tertiary Boundary,” Nature 396, 237–239 (1998).

    Article  Google Scholar 

  3. A. Shukolyukov and G. W. Lugmair, “Isotopic Evidence for the Cretaceous-Tertiary Impactor and its Type,” Science 282, 927–930 (1998).

    Article  Google Scholar 

  4. R. Frei and K. M. Frei, “A Multi-Isotopic and Trace Element Investigation of the Cretaceous-Tertiary Boundary Layer at Stevns Klint, Denmark—Inferences for the Origin and Nature of Siderophile and Lithophile Element Geochemical Anomalies,” Earth Planet. Sc. Lett. 203, 691–708 (2002).

    Article  Google Scholar 

  5. G. Quitte, E. Robin, F. Capmas, et al., “Carbonaceous or Ordinary Chondrite as the Impactor at the K/T Boundary? Clues from Os, W, and Cr Isotopes,” Lunar Planet. Sci. 34, 1615 (2003).

    Google Scholar 

  6. A. Trinquier, J. L. Birck, and C. J. Alegret, “The Nature of the KT Impactor,” Earth Planet. Sci. Lett. 24, 870–788 (2006).

    Google Scholar 

  7. P. I. Premović, “The Conspicuous Red Impact Layer of the Fish Clay at Höjerup (Stevns Klint, Denmark),” Geochem. Int., 47, No. 5, 543–550 (2009).

    Google Scholar 

  8. I. Gilmour and E. Anders, “Cretaceous-Tertiary Boundary Event. Evidence for a Short Time Scale,” Geochim. Cosmochim. Acta 53, 503–511 (1989).

    Article  Google Scholar 

  9. G. Keller, L. Li, and N. MacLeod, “The Cretaceous/Tertiary Boundary Stratotype Section at El Kef, Tunisia: How Catastrophic was the Mass Extinctions?” Palaeogeogr. Palaeocl. Palaeoecol. 119, 221–254 (1995).

    Article  Google Scholar 

  10. W. S. Wolbach, I. Gilmour, E. Anders, et al., “Global Fire at the Cretaceous-Tertiary Boundary,” Nature 334, 665–669 (1998).

    Article  Google Scholar 

  11. J. D. O’Keefe and T. J. Ahrens, “Impact Production of CO2 by Cretaceous/tertiary Extinction Bolide and the Resultant Heating of the Earth,” Nature 338, 247–249 (1989).

    Article  Google Scholar 

  12. S. D’Hondt, M. E. Q. Pilson, and H. Sigurdsson, “Surface-Water Acidification and Extinction at the Cretaceous-Tertiary Boundary,” Geology 22, 983–986 (1994).

    Article  Google Scholar 

  13. E. Pierazzo, D. A. Kring, and H. Melosh, “Hydrocode Modelling of the Chicxulub Impact Event and the Production of Climatically Active Gases,” J. Geophys. Res. 103, 28607–28625 (1998).

    Article  Google Scholar 

  14. T. Maruoka and C. Koeberl, “Acid-Neutralizing Scenario after the Cretaceous-Tertiary Impact Event,” Geology 31, 489–492 (2003).

    Article  Google Scholar 

  15. S. D’Hondt, “Consequences of the Cretaceous/Paleogene Mass Extinction for Marine Ecosystems.” Annu. Rev. Ecol. Evol. Syst. 36, 295–317 (2005).

    Article  Google Scholar 

  16. B. Schmitz, “Metal Precipitation in the Cretaceous-Tertiary Boundary Clay at Stevns Klint, Denmark.” Geochim. Cosmochim. Acta 49, 2361–2370 (1985).

    Article  Google Scholar 

  17. W. C. Elliott, “Origin of the Mg-Smectite at the Cretaceous/Tertiary (K/T) Boundary at Stevns Klint, Denmark,” Clay Clay Miner. 41, 442–452 (1993).

    Article  Google Scholar 

  18. M. B. Hart, S. E. Fiest, G. D. Price, et al., “Reappraisal of the K-T Boundary Succession at Stevns Klint, Denmarj,” J. Geol. Soc. 161, 885–892 (2004)..

    Article  Google Scholar 

  19. B. Bauluz, D. R. Peacor, and W. C. Elliott, “Coexisting Altered Glass and Fe-Ni Oxides at the Cretaceous-Tertiary Boundary, Stevns Klint (Denmark): Direct Evidence of Meteorite Impact,” Earth Planet. Sci. Lett. 182, 127–136 (2000).

    Article  Google Scholar 

  20. T. J. Wdowiak, L. P. Armendarez, D. G. Agresti, et al., “Presence of an Iron-Rich Nanophase Material in the Upper Layer of the Cretaceous-Tertiary Boundary Clay,” Meteor. Planet. Sci. 36, 123–133 (2001).

    Article  Google Scholar 

  21. M. Ortega-Huertas, I. Palomo, F. Martinez, et al., “Geological Factors Controlling Clay Mineral Patterns Across the Cretaceous-Tertiary Boundary in Mediterranean and Atlantic Sections,” Clay Miner. 33, 483–500 (1998).

    Article  Google Scholar 

  22. I. Arenillas, J. A. Arz, and E. Molina, “A New High-Resolution Planktic Foraminiferal Zonation and Subzonation for the Lower Danian,” Lethaia 17, 79–95 (2004).

    Article  Google Scholar 

  23. Díaz-Martínez E., Sanz-Rubio E. and Martínez-Frías, “Sedimentary Record of Impact Events in Spain,” Geol. Soc. Am. Spec. Pap. 356, 551–562 (2002).

    Google Scholar 

  24. E. Robin, D. Boclet, D. Bonté, et al., “The Stratigraphic Distribution of Ni-Rich Spinels in Cretaceous-Tertiary Boundary Rocks at El Kef (Tunisia), Caravaca (Spain) and Hole 761 (Leg 122),” Earth Planet. Sci. Lett. 107, 715–721 (1991).

    Article  Google Scholar 

  25. J. W. Cowie, W. Zieger, and J. Remane, “Stratigraphic Commission Accelerates Progress (1984–1989),” Episodes 12, 79–83 (1989).

    Google Scholar 

  26. E. Molina, L. Alegret, I. Arenillas, et al., “The Global Stratotype Section and Point of the Danian Stage (Paleocene, Paleogene, “Tertiary”, Cenozoic) at El Kef, Tunisia: Original Definition and Revision,” Episodes 29, 263–278. (2006).

    Google Scholar 

  27. J. Smit, “Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary.” Geol. Soc. Am. Spec. Pa, No. (1982), 329–352.

  28. J. Smit, “The global Stratigraphy of the Cretaceous-Tertiary Boundary Impact Ejecta,” Annu. Rev. Earth Planet. Sci. 27, 75–113 (1999).

    Article  Google Scholar 

  29. J. H. Crocket, C. B. Officer, F. C. Wezel, et al., “Distribution of Noble Metals Across the Cretaceous/Tertiary Boundary at Gubbio, Italy: Iridium Variation as a Constraint on the Duration and Nature of Cretaceous/Tertiary Boundary Events,” Geology 16, 77–80 (1988).

    Article  Google Scholar 

  30. M. Ortega-Huertas, F. Martinez-Ruiz, I. Palomo, et al., “Comparative Mineralogical and Geochemical Clay Sedimentation in the Betic Cordilleras and Basque-Cantabrian Basin Areas at the Cretaceous-Tertiary Boundary,” Sediment. Geol. 95, 209–227 (1995).

    Article  Google Scholar 

  31. E. Molina, I. Arenillas, and J. A. Arz, “Mass Extinction in Planktic Foraminifera at the Cretaceous/Tertiary Boundary in Subtropical and Temperate Latitudes,” Bull. Soc. Fr. Ge-ol. Fr. 169, 351–363 (1998).

    Google Scholar 

  32. D. Stüben, U. Kramar, Z. Berner, et al., “Trace Elements, Stable Isotopes and Clay Mineralogy of the K-T Boundary Section in Tunisia: Indications for Sea Level Fluctuations and Primary Productivity,” Palaeogeo. Palaeocli. Palaeoecol. 178, 321–345 (2002).

    Article  Google Scholar 

  33. L. Alegret, I. Arenillas, J. A. Arz, et al., “Foraminiferal Event—stratigraphy across the Cretaceous/Tertiary Boundary,” Neues Jahrb. Geol. P-A 234, 25–50 (2004).

    Google Scholar 

  34. E. Fornaciari, L. Guisberti, V. Luciani, et al., “An Expanded Cretaceous-Tertiary Transition in a Pelagic Setting of the Southern Alps (Central-Western Tethys),” Palaeogeo. Palaeoclim. Palaeoecol. 255, 98–131 (2007).

    Article  Google Scholar 

  35. C. J. Hollis, “The Cretaceous/Tertiary Boundary Event in New Zealand: Profiling Mass Extinction,” New Zealand J. Geol. Geophys. 46, 307–321 (2003).

    Article  Google Scholar 

  36. C. P. Strong, R. Brooks, S. Wilson, et al., “A New Cretaceous-Tertiary Boundary Site at Flaxbourne River, New Zealand: Biostratigraphy and Geochemistry,” Geochim. Cosmochim. Acta 51, 2769–2777 (1987).

    Article  Google Scholar 

  37. R. M. Pollastro and B. F. Bohor, “Origin and Clay-Mineral Genesis of the Cretaceous/Tertiary Boundary Unit, Western Interior of North America,” Clay Clay Miner. 41, 7–25 (1993).

    Article  Google Scholar 

  38. Premovíc P.I., Pavlovíc N.Z., Pavlovíc, et al., “Physicochemical Conditions of Sedimentation of the Fish Clay from Stevns Klint, Denmark and its Nature: Vanadium and other Supportive Evidence,” Geochim. Cosmochim. Acta 57, 1433–1446 (1993).

    Article  Google Scholar 

  39. Premovíc P.I., B.Ž. Todorovíc and M.N. Stankovíc, “Cretaceous-Paleogene Boundary (KPB) Fish Clay at Höjerup (Stevns Klint, Denmark),” Geol. Acta 6, 369–382 (2008).

    Google Scholar 

  40. J. Wendler and H. Willems, “The Distribution Pattern of Calcareous Dinoflagellate Cysts at the Cretaceous/Tertiary Boundary (Fish Clay, Stevns Klint, Denmark)—Implications for our Understanding of Species Selective Extinction,” Geol. Soc. Am. Spec. Pap. 356, 265–277 (2002).

    Google Scholar 

  41. F. Martinez-Ruiz, M. Ortega-Huertas, D. Kroon, et al., “Geochemistry of the Cretaceous-Tertiary Boundary at Blake Nose (ODP Leg, 171N), Geol. Soc. London. Spec. Publ., 183, 131–148 (2001).

    Article  Google Scholar 

  42. F. Martínez-Ruiz, M. Ortega-Huertas, I. Palomo, et al., “K/T boundary Spherules from Black Nose (ODP Leg 171B) as a Record of the Chicxulub Ejecta Deposits,” Geol. Sco. London, Spec. Publ. 183, 149–161 (2001).

    Article  Google Scholar 

  43. F. Martínez-Ruiz, M. Ortega-Huertas, and I. Palomo, “Climate, Tectonics and Meteoritic Impact Expressed by Clay Mineral Sedimentation across the Cretaceous-Tertiary Boundary at Blake Nose, Northwestern Atlantic,” Clay Mineral. 37, 49–60 (2001).

    Article  Google Scholar 

  44. R. K. Olsson, K. G. Miller, J. V. Browning, et al., “Ejecta Layer at the Cretaceous-Tertiary Boundary, Bass River, New Jersey (Ocean Drilling Program Leg 174AX),” Geology 25, 759–762 (1997).

    Article  Google Scholar 

  45. K. G. MacLeod, D. L. Whitney, B. T. Huber, et al., “Impact and Extinction in Remarkably Complete Cretaceous-Tertiary Boundary Sections from Demerara Rise, Tropical Western North Atlantic,” Geol. Soc. Am. Bull. 119 101–115 (2007).

    Article  Google Scholar 

  46. K. J. Hsü, Q. He, J. McKenzie, et al., “Mass Mortality and its Environmental and Evolutionary Consequences,” Science 216, 249–256 (1982).

    Article  Google Scholar 

  47. B. Schmitz, F. Asaro, H. V. Michel, et al., “Element Stratigraphy across the Cretaceous/Tertiary Boundary in Hole 738°C,” Proc. ODP Sci.l Res. 119, 719–730 (1991).

    Google Scholar 

  48. H. R. Thierstein, F. Asaro, W. U. Ehrmann, et al., “The Cretaceous/Tertiary Boundary at Site 738, Southern Kergulen Plateau,” Proc. ODP Sci. Res. 119, 849–867 (1991).

    Google Scholar 

  49. L. Alegret and E. Thomas, “Cretaceous/Paleogene Boundary Bathyal Paleo-Environments in the Central North Pacific (DSDP Site 465), the Northwestern Atlantic (ODP Site 1049), the Gulf of Mexico and the Tethys: the Benthic Foraminiferal Record, Palaeogeo. Paleoclim. Palaeoecol. 224, 53–82 (2005).

    Article  Google Scholar 

  50. A. A. Ekdale and R. G. Bromley, “Sedimentology and Ichnology of the Cretaceous-Tertiary Boundary in Denmark: Implications for the Causes of the Terminal Cretaceous Extinction,” J. Sediment. Petrol. 54, 681–703 (1984).

    Google Scholar 

  51. H. J. Hansen, “Diachronous Extinctions at the K/T Boundary, Geol. Soc. Am. Spec. Pap. 247, 417–423 (1990).

    Google Scholar 

  52. H. J. Hansen, “Diachronous Disappearance of Marine and Terrestrial biota at the Cretaceous-Tertiary boundary.” Contr. Paleontol. Mus. Univ. Oslo 364, 31–32 (1991).

    Google Scholar 

  53. B. Schmitz, “Chalcophile Elements and Ir in Continental Cretaceous-Tertiary Boundary Clays from the Western Interior of the USA.” Geochim. Cosmochim. Acta 56, 1695–1703 (1992).

    Article  Google Scholar 

  54. F. Surlyk, “A Cool-Water Carbonate Ramp with Bryozoan Mounds: Late Cretaceous-Danian of the Danish Basin,” in Cool-Water Carbonates, Ed. by N. P. James and J. A. D. Clark (SEPM, Tulsa, 1997), pp. 293–307.

    Chapter  Google Scholar 

  55. S. J. Culver, “Benthic Foraminifera across the Cretaceous-Tertiary (KT) Boundary: a Review,” Mar. Micropaleont. 47, 177–226 (2003).

    Article  Google Scholar 

  56. J. A. Rasmussen, C. Heinberg, and E. Håkanson, “Planktonic Forminifers, Biostratigraphy and the Diachronous Nature of the Lowermost Danian Cerithium Limestone at Stevns Klint, Denmark,” Bull. Geol. Soc. Denmark 52, 113–131 (2005).

    Google Scholar 

  57. J. Smit and T. M. G. Van Kempen, “Planktonic Foraminifers from the Cretaceous/Tertiary Boundary at Deep Sea Drilling Project Site 605, North Atlantic,” in Deep Sea Drilling Project, Ed. by J. E. Van Hinte and W. Wise, 549–553 (1986).

  58. B. A. Ivanov, O. I. Badjukov, M. I. Yakovlev, et al., “Degassing of Sedimentary Rocks due to Chicxulub Impact: Hydrocode and Physical Simulations,” in The Cretaceous-Tertiary Event and other Catastrophes in Earth History, Ed. by G. Ryder, D. Fastovsky and S. Gartner, Geol. Soc. Am. Spec. Pap. 307, 125–139 (1996).

  59. K. O. Pope, K. H. Baines, A. C. Ocampo, et al., “Energy, Volatile Production, and Climatic Effects of the Chicxulub Cretaceous/Tertiary Impact,” J. Geophys. Res. 102, 21645–21664 (1997).

    Article  Google Scholar 

  60. R. Brett, “The Cretaceous-Tertiary Extinction: A Lethal Mechanism Involving Anhydrite Target Rocks,” Geochim. Cosmochim. Acta 56, 3603–3606 (1992).

    Article  Google Scholar 

  61. K. J. Hsü and J. McKenzie, “A Strangelove Ocean in the Earliest Tertiary,” in The Carbon Cycle and Atmospheric CO 2: Natural variations from Archean to the Present, Ed. by E. T. Sundquist and W. S. Broecker, J. Am. Geophys. Un., Mon. 32, 487–492 (1985).

  62. G. J. Retalack, “A 300-Million-Year Record of Atmspheric Caron Dioxide from Fossil Plant Cuticles,” Nature 411, 287–290 (2001).

    Article  Google Scholar 

  63. L. Nordt, S. Atchley, and S. I. Dworkin, “Paleosol Barometer Indicates Extreme Fluctuations in Atmospheric CO2 across the Cretaceous-Terticary Boudnary,” Geology 30, 703–706 (2002).

    Article  Google Scholar 

  64. D. J. Beerling, B. H. Lomax, D. L. Royer, et al., “An atmospheric pCO2 Reconstruction across the Cretaceous-Tertiary Boundary from Leaf Megafossils,” Proc. Nat. Acad. Sci. US. 99, 7836–7840 (2002).

    Article  Google Scholar 

  65. K. Caldeira and M. Wickett, “Anthropogenic Carbon and Ocean pH,” Nature 425, 365 (2003).

    Article  Google Scholar 

  66. J. Blackford, M. Austen, P. Halloran, et al., “Modelling the Response of Marine Ecosystems to Increasing Levels of CO2,” in A report to Defra Arising from the Advances in Marine Ecosystem Modelling Research Workshop, (Plymouth, 2007).

  67. E. Pierazzo, A. N. Hahmann, and L. C. Sloan, “Chicxulub and Climate: Radiative Perturbations of Impact-Produced S-bearing Gases.” Astrobiology 3, 99–118 (2003).

    Article  Google Scholar 

  68. C. Emiliani, E. B. Kraus, and E. M. Shoemaker, “Sudden death at the end of the Mesozoic,” Earth Planet. Sci. Lett. 55, 317–334 (1981).

    Article  Google Scholar 

  69. J. S. Lewis, Watkins G. Hampton, H. Hartman, et al., “Chemical Consequences of Major Impact Events on Earth,” in Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Ed. by L. T. Silver and P. H. Schultz, Geol. Soc. Am. Spec. Pap. 190, 215–221 (1982).

  70. R. G. Prinn and B. Fegley, “Bolide Impacts, Acid Rain, and Biospheric Traumas at the Cretaceous-Tertiary Boundary,” Earth Planet. Sci. Lett. 247, 1–15 (1987).

    Article  Google Scholar 

  71. K. J. Zahnle, “Atmospheric Chemistry by Large Impacts,” in Global Catastrophes in Earth History. An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality, Ed. by V. L. Sharpton and P. D. Ward, Geol. Sco. Am. Spec. Pap. 247, 271–288 (1990).

  72. K. G. Caldeira and M. R. Rampino, “Aftermath of the End-Cretaceous Mass Extinction—Possible Biogeochemical Stabilization of the Carbon-Cycle and Climate,” Paleoceanography 8, 515–525 (1993).

    Article  Google Scholar 

  73. K. G. Caldeira and G. H. Rau, “Accelerating Carbonate Dissolution to Sequester Carbon Dioxide in the Ocean. Geochemical Implications,” Geophys. Res. Lett. 27, 225–228 (2000).

    Article  Google Scholar 

  74. D. Archer, H. Kheshgi, and E. Maier-Reimer, “Multiple Timescales for Neutralization of Fossil Fuel CO2,” Geophys. Res. Lett. 24, 405–408 (1997).

    Article  Google Scholar 

  75. D. A. Kring, “The Chicxulub Impact Event and its Environmental Consequences at the Cretaceous-Tertiary Boundary,” Palaeogeogr. Palaeoclim. Palaeoecol. 255, 14–21 (2007).

    Google Scholar 

  76. D. S. Robertson, M. Mckenna, O. B. Toon, et al., “Survival in the First Hours of the Cenozoic,” Geol. Soc. Am. Bull. 116, 760–763 (2004).

    Article  Google Scholar 

  77. J. V. Bailey, A. S. Cohen, and D. A. Kring, “Lacustrine Fossil Preservation in Acidic Environments: Implications of Experimental and Field Studies for the Cretaceous-Paleogene Boundary Acid Rain Trauma,” Palaios 20, 376–389 (2005).

    Article  Google Scholar 

  78. W. S. Broecker and T. H. Peng, Tracers in the Sea (Eldigio Press, 1982).

  79. Y. G. Liu and R. A. Schmitt, “Cretaceous-Tertiary Phenomena in the Context of Seafloor Rearrangements and p(CO2) Fluctuations over the Past 100 m.y.,” Geochim. Cosmochim Acta. 60, 973–994 (1996).

    Article  Google Scholar 

  80. F. L. Sutherland, “Volcanism around K/T Boundary Time—its Role in an Aimpact Scenario for the K/T Extinctions Events,” Earth Sci. Rev. 36, 1–26 (1994).

    Article  Google Scholar 

  81. C. Hofmann, G. Feraud, and V. Courtillot, “40/39Ar Dating of Mineral Separates and Whole Rocks from teh Western Ghats Lava Pile: Further Constraints on Duration and Age of the Deccan Traps,” Earth Planet. Sci. Lett. 180, 13–27 (2000).

    Article  Google Scholar 

  82. K. G. Caldeira and M. R. Rampino, “Deccan Volcanism, Greenhouse Warming, and the Cretaceous/Tertiary Boundary,” Geol. Soc. Am. Spec. Pap. 247, 117–123 (1990).

    Google Scholar 

  83. S. Self, T. Thordarson, and M. Widdowson, “Gas Fluxes from Flood Basalt Eruptions,” Elements, No. 1, 283–287 (2005).

  84. J. C. Zachos, U. Röhl, S. A. Schellenberg, et al., “Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum,” Science 308, 1611–1615 (2005).

    Article  Google Scholar 

  85. J. D. Milliman, “Production and Accumulation of Calcium Carbonate in the Ocean: Budget of a Non-Steady State,” Glob. Biogeochem. Cycl. 7, 927–957 (1993).

    Article  Google Scholar 

  86. J. D. Milliman, P. J. Troy, W. M. Balch, et al., “Biologically Mediated Dissolution of Calcium Carbonate above the Chemical Lysocline,” Deep-Sea Res. I 46, 1653–1669 (1999).

    Article  Google Scholar 

  87. P. Westbroek, J. R. Young, and K. Linschooten, “Coccolith Production (Biomineralization) in the Marine Alga Emiliania Huxleyi,” J. Protozool. 36, 368–373 (1989).

    Google Scholar 

  88. I. Arenillas, J. A. Arz, J. M. Grajales-Nishimura, et al., “Chicxulub Impact Event is Cretaceous/Paleogene Boundary in Age: New Micropaleontological Evidence,” Earth Planet. Sc. Lett. 249, 241–257, (2006).

    Article  Google Scholar 

  89. R. J. Twitchett, “The Palaeocimatology, Palaeoecology and Palaeoenvironmental Analysis of Mass Extinction Events,” Palaeogeo. Palaeoclim. Palaeoecol. 232, 190–213 (2006).

    Article  Google Scholar 

  90. D. Sanders, “Syndepositional Dissolution of Calcium Carbonate in Neritic Carbonate Environments: Geological Recognition, Processes, Potential Significance,” J. Afr. Earth Sci. 36, 99–134 (2003).

    Article  Google Scholar 

  91. M. Gehlen, R. Gangst-, B. Schneider, et al., “The Fate of Pelagic CaCO3 Production in a High CO2 Ocean: A Model Study,” Biogeosciences 4, 505–519 (2007).

    Article  Google Scholar 

  92. M. L. Fraiser and D. J. Bottjer, “Elevated Atmospheric CO2 and the Delayed Biotic Recovery from the End-Permian Mass Extinction, Palaeogeorg. Palaeoclim. Palaeoecol. 252, 164–175 (2007).

    Article  Google Scholar 

  93. M. T. Galli, F. Jadoul, S. M. Bernasconi, et al., “Anomalies in Global Carbon Cycling and Extinction at the Triassic/Jurassic Boundary: Evidence from a Marine C-Isotope Record,” Palaeogeogr. Palaeoclim. Palaeoecol. 216, 203–214 (2005).

    Article  Google Scholar 

  94. H. Weissert and E. Erba, “Volcanism, CO2, and Palaeoclimate: a Late Jurassic-Early Cretaceous Carbon and Oxygen Isotope Record,” J. Geol. Sci. 161, 695–702 (2004).

    Article  Google Scholar 

  95. L. Wissler, H. Funk, and H. Weissert, “Response of Early Cretaceous Carbonate Platforms to Changes in Atmospheric Carbon Dioxide Levels,” Palaeogeogr. Paleoclim. Palaeoecol. 200, 187–205 (2003).

    Article  Google Scholar 

  96. B. A. Seibel and P. J. Walsh, ““Carbon Cycle,” Potential, Impacts of CO2 Injection on Deep-Sea Biota,” Science 294, 319–320 (2001).

    Article  Google Scholar 

  97. B. A. Seibel and P. J. Walsh, “Biological Impacts of Deep-Sea Carbon Dioxide Injection Inferred from Indices of Physiological Performance,” J. Exp. Biol. 206, 641–650 (2003).

    Article  Google Scholar 

  98. S. Mukhopadhyay, K. A. Farley, and A. Montanari, “A Short Duration of the Cretaceous-Tertiary Boundary Event: Evidence from Extraterrestrial Helium-3,” Science 291, 1952–1955 (2001).

    Article  Google Scholar 

  99. I. Arenillas, L. Alegret, J. A. Arz, et al., “Cretaceous-Tertiary Boundary Planktic Foraminiferal Mass Extinction and Biochronology at La Ceiba and Bochil, Mexico, and El Kef, Tunisia,” in Catastrophic Events and Mass Extinctions: Impacts and Beyond, Ed. by C. Koeberl and K.G. MacLeod, Geol. Soc. Am. Spec. Pap. 356, 253–264 (2002).

  100. C. Dupius, E. Steurbaut, E. Molina, et al., “The Cretaceous-Palaeogene (K/P) Boundary in the Äin Settara Section (Kalaat Senana, Central Tunisia): Litological, Micropalaentological and Geochemical Evidence,” Bull. l’Inst. Royal Sci. Natur. Belg. 71, 169–190 (2001).

    Google Scholar 

  101. F. Minoletti, M. de Rafelis, M. Renard, et al., “Changes in the Pelagic Fine Fraction Carbonate Sedimentation during the Cretaceous-Paleocene Transition: Contribution of the Separation Technique to the Study of the Bidart Section,” Palaeogeog. Palaeoclim. Palaeoecol. 216, 119–137 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Premović.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Premović, P.I. Distal “impact” layers and global acidification of ocean water at the Cretaceous-Paleogene boundary (KPB). Geochem. Int. 49, 55–65 (2011). https://doi.org/10.1134/S0016702911010095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702911010095

Keywords

Navigation