Skip to main content
Log in

Estimation of crystallization proportions and the equilibrium/disequilibrium of quench experiments in the basite systems

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Original program based on Huang algorithm was used to calculate the concentrations of coexisting phases in quench experiments with the known bulk compositions of systems and phases. Using this procedure, we rejected the disequilibrium experiments from experimental series with the similar bulk (starting) composition of charge and calculated crystallization proportions for the olivine-plagioclase and olivine-plagioclase-augite cotectics. The statistically valid dependence was established for the first time between crystallization proportions for the olivine-plagioclase cotectics and #An of the melt. Experimentally obtained data on the Ol-Pl and Ol-Pl-Aug crystallization proportions were compared with values obtained by numerical simulation of the equilibrium crystallization of basaltic melts using COMAGMAT software. It was shown that the basic version COMAGMAT-3.5 Program with a standard set of liquidus thermometers satisfactorily reproduces the crystallization proportions in these cotectics for basaltic melts. Simulation of crystallization for more silicic magmas requires calibrating liquidus thermometers for modeled compositional range. Only single experimental estimates were obtained for other cotectics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ya. Frenkel, A. A. Yaroshevskii, A. A. Ariskin, et al., The Dynamics of in situ Differentiation of Mafic Magmas (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  2. M. Y. Frenkel, A. A. Yaroshevsky, A. A. Ariskin, et al., “Convective-Cumulative Model Simulating the Formation Process for Stratified Intrusions,” in Magma-Crust Interactions and Evolution, (Theophrastus Publications, Athens, 1989), pp. 3–88.

    Google Scholar 

  3. M. Ya. Frenkel, Thermal and Chemical Dynamics of the Differentiation of Basic Magmas (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  4. A. A. Ariskin and G. S. Barmina, Simulation of Phase Equilibria during Basaltic Magmas Crystallization (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  5. M. Ya. Frenkel, A. A. Ariskin, G. S. Barmina, et al., “Geochemical Thermometry of Igneous Rocks: Principles and Examples,” Geokhimiya, No. 11, 1546–1562 (1987).

  6. J. Abaffi and E. Spedikato, Mathematical Technique for Linear and Non-Linear Equations (Ellis Horwood Limited Publishers, Chichester, 1989; Mir, Moscow, 1996) [in Russian].

    Google Scholar 

  7. V. G. Karmanov, Mathematic Programming (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  8. A. A. Ariskin, K. V. Bouadze, S. S. Meshalkin, and T. I. Tsekhonya, “INFOREX: A Database on Experimental Studies of Phase Relations in Silicate Systems,” Am. Mineral. 77, 668–669 (1992).

    Google Scholar 

  9. T. L. Grove, D. C. Gerlach, and T. W. Sando, “Origin of Calc-Alkaline Series Lavas at Medicine Lake Volcano by Fractionation, As Simulation and Mixing,” Contrib. Mineral. Petrol. 80(2), 160–182 (1982).

    Article  Google Scholar 

  10. T. L. Grove and W. B. Bryan, “Fractionation of Pyroxene-Phyric MORB at Low Pressure: An Experimental Study,” Contrib. Mineral. Petrol. 84(4), 293–309 (1983).

    Article  Google Scholar 

  11. G. A. Mahood and D. R. Baker, “Experimental Constraints on Depths of Fractionation of Mildly Alkalic Basalts and Associated Felsic Rocks: Pantelleria, Strait of Sicily,” Contrib. Mineral. Petrol. 93(2), 251–264 (1986).

    Article  Google Scholar 

  12. D. R. Tormey, T. L. Grove, and W. B. Bryan, “Experimental Petrology of Normal MORB Near the Kane Fracture Zone: 22–25 N, Mid-Atlantic Ridge,” Contrib. Mineral. Petrol. 96(2), 121–139 (1987).

    Article  Google Scholar 

  13. R. O. Sack, D. Walker, and I. S. E. Carmichael, “Experimental Petrology of Alkalic Lavas: Constraints on Cotectics of Multiple Saturation in Natural Basic Liquids,” Contrib. Mineral. Petrol. 96(1), 1–23 (1987).

    Article  Google Scholar 

  14. D. R. Baker and D. H. Eggler, “Compositions of Anhydrous and Hydrous Melts Coexisting with Plagioclase, Augite, and Olivine Or Low-Ca Pyroxene from 1 Atm To 8 Kbar: Application To the Aleutian Volcanic Centre of Atka,” Am. Mineral. 72(1–2), 12–28 (1987).

    Google Scholar 

  15. T. L. Grove and T. C. Juster, “Experimental Investigations of Low-Ca Pyroxene Stability and Olivine-Pyroxene-Liquid Equilibria at 1-Atm in Natural Basaltic and Andesitic Liquids,” Contrib. Mineral. Petrol. 103(3), 287–305 (1989).

    Article  Google Scholar 

  16. S. J. Barnes, “The Distribution of Chromium Among Orhtopyroxene, Spinel and Silicate Liquid at Atmo spheric Pressure,” Geochim. Cosmochim. Acta 50(9), 1889–1909 (1986).

    Article  Google Scholar 

  17. P. Thy, G. E. Lofgren, and P. Imsland, “Melting Relations and the Evolution of the Jan Mayen Magma System,” J. Petrol. 32 Part 2, 303-332 (1991).

    Google Scholar 

  18. D. Snyder, I. S. E. Carmichael, and R. A. Wiebe, “Experimental Study of Liquid Evolution in An Fe-Rich, Layered Mafic Intrusion: Constraints of Fe-Ti Oxide Precipitation on the T-fO2 and T-P Paths of Tholeiitic Magmas,” Contrib. Mineral. Petrol. 113(1), 73–86 (1992).

    Article  Google Scholar 

  19. J. K. Meen, “Formation of Shoshonites from Calcalkaline Basalt Magmas: Geochemical and Experimental Constraints from the Type Locality,” Contrib. Mineral. Petrol. 97(3), 333–351 (1987).

    Article  Google Scholar 

  20. T. L. Grove, R. J. Kinzler, and W. B. Bryan, “2.Natural and Experimental Phase Relations of Lavas from Serocki Volcano,” Proc. ODP Sci. Res. 106–109, 9–17 (1990).

    Google Scholar 

  21. G. A. Gaetani, T. L. Grove, and W. B. Bryan, Experimental Phase relations of Basaltic Andesite from Hole839Bunder Hydrous and Anhydrous Conditions, Proc. ODP. Sci. Res. 135, 557–563 (1994).

    Google Scholar 

  22. A. K. Kennedy, T. L. Grove, and R. W. Johnson, “Experimental and Major Element Constraints on the Evolution of Lavas from Lihir Island, Papua New Guinea,” Contrib. Mineral. Petrol. 104(6), 722–734 (1990).

    Article  Google Scholar 

  23. M. J. Toplis and M. R. Carroll, “An Experimental Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral-Melt Equilibria in Ferro-Basaltic Systems,” J. Petrol. 36(5), 1137–1170 (1995).

    Google Scholar 

  24. P. Thy, “Low-Pressure Experimental Constraints on the Evolution of Komatiites,” J. Petrol. 36(6), 1529–1548 (1995).

    Google Scholar 

  25. P. Thy, “Experimental Constraints on the Evolution of Transitional and Mildly Alkalic Basalts: Crystallization of Spinel,” Lithos 36(1), 103–114 (1995).

    Article  Google Scholar 

  26. H.-J. Yang, R. J. Kinzler, and T. L. Grove, “Experiments and Models of Anhydrous, Basaltic Olivine-Plagioclase-Augite Saturated Melts from 0.001 to 10 Kbar,” Contrib. Mineral. Petrol. 124(1), 1–18 (1996).

    Article  Google Scholar 

  27. T. Dunn and C. Sen, “Mineral/Matrix Partition Coefficients for Orthopyroxene, Plagioclase, and Olivine in Basaltic to Andesitic Systems: a Combined Analytical and Experimental Study,” Geochim. Cosmochim. Acta 58 (2), 717–733 (1994).

    Google Scholar 

  28. P. Thy, C. E. Lesher, and M. S. Fram, “Low Pressure Experimental Constraints on the Evolution of Basaltic Lavas from Site 917, Southeast Greenland Continental Margin,” Proc. ODP Sci. Res. 152, 359-372 (1998).

  29. P. Thy, C. E. Lesher, and J. D. Mayfield, “Low-Pressure Melting Studies of Basalt and Basaltic Andesite from the Southeast Greenland Continental Margin,” Proc. ODP Sci. Res. 163, 95–112 (1999).

    Google Scholar 

  30. O. A. Bogatikov, L. V. Kosareva, and E. V. Sharkov, Average Chemical Compositions of Igneous Rocks: A Reference Book, (Nedra, Moscow, 1987) [in Russian].

    Google Scholar 

  31. S. V. Bolikhovskaya, A. A. Yaroshevskii, and E. V. Koptev-Dvornikov, “Simulation of the Geochemical Structure of the Ioko-Dovyren Layered Intrusion, Northwestern Baikal Area,” Geokhimiya, No. 6, 579–598 (2007) [Geochem. Int. 45, 519–527 (2007)].

  32. E. V. Koptev-Dvornikov, B. S. Kireev, N. F. Pchelintseva, and D. M. Khvorov, “Distribution of Cumulative Mineral Assemblages, Major and Trace Elements over the Vertical Section of the Kivakka Intrusion, Olanga Group of Intrusions, Northern Karelia,” Petrologiya 9(1), 3–27 (2001) [Petrology 9, 1–24 (2001)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Koptev-Dvornikov.

Additional information

Original Russian Text © E.V. Koptev-Dvornikov, D.M. Khvorov, 2011, published in Geokhimiya, 2011, Vol. 49, No. 1, pp. 16–34.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koptev-Dvornikov, E.V., Khvorov, D.M. Estimation of crystallization proportions and the equilibrium/disequilibrium of quench experiments in the basite systems. Geochem. Int. 49, 13–30 (2011). https://doi.org/10.1134/S0016702911010046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702911010046

Keywords

Navigation