Skip to main content
Log in

Adaptation of the SELECTOR-C program package for solving petrogenetic problems of metamorphic rocks

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents thermodynamic models for mineral solid solutions used in physicochemical simulations with the SELECTOR-C program package (PP) in application to metamorphic mineral-forming processes. It is demonstrated that the simulated FeO and MgO distribution in the mineral pairs garnetbiotite, garnet-orthopyroxene, orthopyroxene-biotite, orthopyroxene-olivine, garnet-cordierite, garnetclinopyroxene, and clinopyroxene-orthopyroxene in the model samples satisfactorily corresponds to available experimental and empirical data. Simulations of naturally occurring mineral associations are employed to demonstrate the capabilities of the new version of the SELECTOR-C PP as a tool for studying the evolution of mineral assemblages at varying P-T conditions and fluid regime, the perfectly mobile and inert behaviors of certain fluid components during the origin of mineral associations are demonstrated, the pseudosection method applied over a broad P-T range is used to trace systematic variations in the composition of mineral associations in granulite-facies metabasites and metapelites, and the upper limit of plagioclase stability is estimated for these rocks at pressures of 11–12 kbar. Principal differences are elucidated in the effect of rocks rich and poor in Fe3+ on the percolation of metamorphic fluid through them: Fe3+-rich rocks retain their own redox potential at a certain level by buffering reactions, whereas Fe3+-poor rocks rapidly exhaust their buffer capacity and acquire the redox potential of the inflowing external fluid. This allowed us to evaluate the logfO2 at no higher than −17 (at T = 700°C and P = 6.8 kbar). Our simulation of the equilibrium of natural rock samples provides good reasons to believe that natural mineral assemblages can be formed at low fluid/rock ratios of no higher than 0.01–0.06.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Powell and T. Holland, “Source Notes for “THERMOSALS Workshop 2001: Calculating Metamorphic Phase Equilibria,” 2001. http://www.metamorph.geo.uni-mainz.de/thermocalc/.

  2. C. de Capitani and T. H. Brown, “The Computation of Chemical Equilibrium in Complex Systems Containing Non-Ideal Solutions,” Geochim. Cosmochim. Acta 51, 2639–2652 (1987).

    Article  Google Scholar 

  3. C. de Capitani, “Gleichgewichts-Phasendiagramme: Theorie und Software,” Beihefte Europ. J. Mineral. 72 (1994).

  4. J. A. D. Connolly, “Multivariable Phase Diagrams: An Algorithm Based on Generalized Thermodynamics,” Am. J. Sci. 290, 666–718 (1990).

    Article  Google Scholar 

  5. J. A. D. Connolly and K. Petrini, “An Automated Strategy for Calculation of Phase Diagram Sections and Retrieval of Rock Properties as a Function of Physical Conditions,” J. Metamorph. Geol. 20, 697–708 (2002).

    Article  Google Scholar 

  6. T. J. B. Holland and R. Powell, “An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest,” J. Metamorph. Geol. 16(3), 309–343 (1998).

    Article  Google Scholar 

  7. J. A. D. Connolly, “Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation,” Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Article  Google Scholar 

  8. I. K. Karpov, K. V. Chudnenko, and D. A. Kulik, “Modeling Chemical Mass-Transfer in Geochemical Processes: Thermodynamic Relations, Conditions of Equilibria and Numerical Algorithms,” Am. J. Sci. 297, 767–806 (1997).

    Article  Google Scholar 

  9. O. V. Avchenko and K. V. Chudnenko, V.O. Khudolozhkin, I. A. Aleksandrov, “Oxidation Potential and the Composition of Metamorphic Fluid as a Solution to the Inverse Problem of Convex Programming,” Geokhimiya, No. 5, 547–558 (2007) [Geochem. Int. 45, 49–500 (2007)].

  10. L. Ya. Aranovich, Mineral Equilibria of Multicomponent Solid Solutions (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  11. V. A. Kurepin, “Thermodynamics of Minerals of Variable Composition and Geological Thermobarometry,” (Naukova Dumka, Kiev, 1981) [in Russian].

    Google Scholar 

  12. L. L. Perchuk, K. K. Podlesskii, and L. Ya. Aranovich, “Thermodynamics of Some Framework Silicates and Their Equilibria for Thermobarometry,” in Physicochemical Analysis of Mineral-Forming Processes (Nauka, Moscow, 1989), pp. 45–96 [in Russian].

    Google Scholar 

  13. H. P. Eugster, A. L. Albee, A. E. Bence, et al., “The Two-Phase Region and Excess Mixing Properties of Paragonite-Muscovite Crystalline Solutions,” J. Petrol. 13(1), 147–179 (1972).

    Google Scholar 

  14. L. S. Darken, “Thermodynamics of Binary Metallic Solutions,” Trans. M. Metal. Soc. AIME 239(1), 90–96 (1967).

    Google Scholar 

  15. T. J. B. Holland and R. Powell, “Plagioclase Feldspars: Activity-Composition Relations Based upon Darken’s Quadratic Formalism and Landau Theory,” Am. Mineral. 77, 53–61 (1992).

    Google Scholar 

  16. R. Powell and T. Holland, “On the Formulation of Simple Mixing Models for Complex Phases,” Am. Mineral. 78, 1174–1180 (1993).

    Google Scholar 

  17. R. Powell and T. Holland, “Relating Formulations of the Thermodynamics of Mineral Solid Solutions: Activity Modeling of Pyroxenes, Amphiboles, and Micas,” Am. Mineral. 84, 1–14 (1999).

    Google Scholar 

  18. J. Dale, T. Holland, and R. Powell, “Hornblende-Garnet-Plagioclase Thermobarometry: A Natural Assemblage Calibration of the Thermodynamics of Hornblende,” Contrib. Mineral. Petrol. 140, 353–362 (2000).

    Article  Google Scholar 

  19. O. V. Avchenko, I. A. Aleksandrov, and K. V. Chudnenko, “Thermodynamic Models of Mineral Solid Solutions in Selector-C Software Package,” in Studied in Russia, 707–719 (2007). http://zhurnal.ape.relarn.ru/articles/2007/068.pdf.

  20. O. V. Avchenko, Mineral Equilibria in Metamorphic Rocks and Problems of Geobarometry (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  21. O. V. Avchenko, Petrology of the Okhotsk Metamorphic Complex (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  22. I. V. Lavrent’eva and L. L. Perchuk, “Phase Correspondence in the Biotite-Garnet System: Experimental Data,” Dokl. Akad. Nauk SSSR 260(3), 731–734 (1981).

    Google Scholar 

  23. J. M. Ferry and F. S. Spear, “Experimental Calibration of the Partitioning of Fe and Mg between Biotite and Garnet,” Contrib. Mineral. Petrol. 66, 113–117 (1978).

    Article  Google Scholar 

  24. V. von Seckendorff and H. St. C. O’Neil, “An Experimental Study of Fe-Mg Partitioning between Olivine and Orthopyroxene at 1173, 1273 and 1423 K and 1.6 GPa,” Contrib. Mineral. Petrol. 113, 196–207 (1993).

    Article  Google Scholar 

  25. V. I. Fonarev and A. N. Konilov, “An Experimental Study of Fe-Mg Distribution between Biotite and Orthopyroxene,” Contrib. Mineral. Petrol. 93, 227–235 (1986).

    Article  Google Scholar 

  26. K. K. Podlesskii, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (IEM, Chernogolovka, 1981).

  27. H. Y. Lee and J. Ganguly, “Equilibrium Composition of Coexisting Garnet and Orthopyroxene: Experimental Determination S in the System FeO-MgO-Al2O3-SiO2, and Application,” J. Petrol. 29, 93–113 (1988).

    Google Scholar 

  28. D. J. Ellis and D. H. Green, “An Experimental Study the Effect of Ca upon Garnet-Clinopyroxene Fe-Mg Exchange Equilibria,” Contrib. to Mineral. and Petrol. 71, 13–22(1979).

    Article  Google Scholar 

  29. R. E. Krogh, “The Garnet-Clinopyroxene Fe2+-Mg Geothermometer: An Updated Calibration,” J. Metamorph. Geol. 18, 211–219 (2000).

    Article  Google Scholar 

  30. M. P. Dickenson and D. A. Hewitt, “A Garnet-Chlorite Geothermometer,” Geol. Soc. Am. 18(6), 584 (1986).

    Google Scholar 

  31. A. A. Marakushev, “Temperature Effect on Orthopyroxene-Clinopyroxene and Orthopyroxene-Olivine Equilibria,” in Metasomatism and Other Problems of Physicochemical Petrology (Nauka, Moscow, 1968), pp. 31–53 [in Russian].

    Google Scholar 

  32. A. A. Grafchikov and V. I. Fonarev, “Garnet-Orthopyroxene-Plagioclase-Quartz Barometer (Experimental Calibration),” in Essays on Physicochemical Petrology (Nauka, Moscow, 1991), Vol. 16, pp. 199–225 [in Russian].

    Google Scholar 

  33. L. Y. Aranovich and R. G. Berman, “A New Garnet-Orthopyroxene Thermometer Based on Reversed Al2O3 Solubility in FeO-Al2O3-SiO2 Orthopyroxene,” Am. Mineral. 82, 345–353 (1997).

    Google Scholar 

  34. D. Perkins III, T. J. B. Holland, R. C. Newton, “The Al2O3 Contents of Enstatite in Equilibrium with Garnet in the System MgO-Al2O3-SiO2 at 15–40 Kbar and 900–1600°C,” Contrib. Mineral. Petrol. 78, 99–109 (1981).

    Article  Google Scholar 

  35. L. L. Perchuk, Magmatism, Metamorphism, and Geodynamics (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  36. D. S. Korzhinskii, Theoretical Principles of the Analysis of Mineral Assemblages (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  37. L. P. Karsakov, Deep-Seated Granulites with Reference to the Chogar Complex of the Stanovoy Fold System, East Siberia (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  38. L. L. Perchuk, V. I. Kitsul, and L. Ya. Aranovich, Petrology of the Granulites of the Aldan Shield (YaF SO AN SSSR, Yakutsk, 1987).

    Google Scholar 

  39. I. V. Kozyreva, O. V. Avchenko, and M. A. Mishkin, High-Grade Metamorphism of the Late Archean Volcanogenic Processes, (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  40. I. A. Aleksandrov, “High-Pressure Metamorphism of the Amphibolite Facies of the Dzhugdzhur-Stanovoy Block, East Siberia,” Tikhookean. Geol. 24(6), 88–100 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Avchenko.

Additional information

Original Russian Text © O.V. Avchenko, K.V. Chudhenko, I.A. Aleksandrov, V.O. Khudolozhkin, 2011, published in Geokhimiya, 2011, Vol. 49, No. 2, pp. 149–164.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avchenko, O.V., Chudhenko, K.V., Aleksandrov, I.A. et al. Adaptation of the SELECTOR-C program package for solving petrogenetic problems of metamorphic rocks. Geochem. Int. 49, 139–153 (2011). https://doi.org/10.1134/S0016702910121018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702910121018

Keywords

Navigation