Skip to main content
Log in

Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0–600°C and pressures of 1–3000 bar

  • Short Communications
  • Published:
Geochemistry International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. A. Sverjensky, E. L. Shock, and H. C. Helgeson, “Prediction of Thermodynamic Properties of Aqueous Metal Complexes to 1000°C and 5 Kb,” Geochim. Cosmochim. Acta 61, 1359–1412 (1997).

    Article  Google Scholar 

  2. E. L. Shock, D. C. Sassani, M. Willis, and D. A. Sverjensky, “Inorganic Species in Geologic Fluids: Correlations among Standard Molal Thermodynamic Properties of Aqueous Ions and Hydroxide Complexes,” Geochim. Cosmochim. Acta 61, 907–950 (1997).

    Article  Google Scholar 

  3. N. N. Akinfiev and A. V. Zotov, “Thermodynamic Description of Chloride, Hydrosulfide, and Hydroxo Complexes of Ag(I), Cu(I), and Au(I) at Temperatures of 25–500°C and Pressures of 1–2000 Bar,” Geokhimiya, No. 10, 1–17 (2001) [Geochem. Int. 39, 990–1006 (2001)].

  4. B. W. Mountain and T. M. Seward, “Hydrosulfide/Sulfide Complexes of Copper(I): Experimental Confirmation of the Stoichiometry and Stability of Cu(HS to Elevated Temperatures,” Geochim. Cosmochim. Acta 67, 3005–3014 (2003).

    Article  Google Scholar 

  5. B. R. Tagirov, N. N. Baranova, A. V. Zotov, et al., “Experimental Determination of the Stabilities of Au2S(cr) at 25°C and Au(HS at 25–250°C,” Geochim. Cosmochim. Acta 70, 3689–3701 (2006).

    Article  Google Scholar 

  6. A. Stefa-nsson and T. M. Seward, “Experimental Determination of the Stability and Stoichiometry of Sulphide Complexes of Silver(I) in Hydrothermal Solutions to 400°C,” Geochim. Cosmochim. Acta 67, 1395–1413 (2003).

    Article  Google Scholar 

  7. A. Stefánsson and T. M. Seward, “Gold(I) Complexing in Aqueous Sulphide Solutions to 500°C at 500 Bar,” Geochim. Cosmochim. Acta 68, 4121–4143 (2004).

    Article  Google Scholar 

  8. B. R. Tagirov, S. Salvi, J. Schott, and N. N. Baranova, “Experimental Study of Gold-Hydrosulphide Complexing in Aqueous Solutions at 350–500°C, 500 and 1000 Bars Using Mineral Buffers,” Geochim. Cosmochim. Acta 69, 2119–2132 (2005).

    Article  Google Scholar 

  9. H. C. Helgeson, D. H. Kirkham, and G. C. Flowers, “Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures: IV. Calculation of Activity Coefficients, Osmotic Coefficients, and Apparent Molal and Standard and Relative Partial Molal Properties to 600°C and 5 Kb,” Am. J. Sci. 291, 1249–1516 (1981).

    Article  Google Scholar 

  10. J. C. Tanger IV and H. C. Helgeson, “Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Revised Equations of State for Standard Partial Molal Properties of Ions and Electrolytes,” Amer. J. Sci. 288, 19–98 (1988).

    Article  Google Scholar 

  11. E. L. Shock, H. C. Helgeson, and D. A. Sverjensky, “Calculation of the Thermodynamic Properties of Aqueous Species at High Pressures and Temperatures: Standard Partial Molal Properties of Inorganic Neutral Species,” Geochim. Cosmochim. Acta 53, 2157–2183 (1989).

    Article  Google Scholar 

  12. E. L. Shock and H. C. Helgeson, “Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Correlation Algorithms for Ionic Species and Equation of State Predictions to 5 Kb and 1000°C,” Geochim. Cosmochim. Acta 52, 2009–2036 (1988).

    Article  Google Scholar 

  13. K. J. Jackson and H. C. Helgeson, “Chemical and Thermodynamic Constraints on the Hydrothermal Transport and Deposition of Tin: I. Calculation of the Solubility of Cassiterite at High Pressures and Temperatures,” Geochim. Cosmochim. Acta 49, 1–22 (1985).

    Article  Google Scholar 

  14. R. E. Mesmer, W. L. Marshall, D. A. Palmer, et al., “Thermodynamic of Aqueous Association and Ionization Reactions at High Temperatures and Pressures,” J. Solution Chem. 17, 699–718 (1988).

    Article  Google Scholar 

  15. J. R. Ruaya, “Estimation of Instability Constants of Metal Chloride Complexes in Hydrothermal Solutions up to 300°C,” Geochim. Cosmochim. Acta 52, 1983–1996 (1988).

    Article  Google Scholar 

  16. J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, “SUPCRT92: A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5000 Bars and 0 to 1000°C,” Comp. Geosci. 18, 899–947 (1992).

    Article  Google Scholar 

  17. B. Tagirov, A. V. Zotov, and N. N. Akinfiev, “Experimental Study of Dissociation of HCl from 350 to 500°C and from 500 to 2500 Bars: Thermodynamic Properties of HCl(Aq),” Geochim. Cosmochim. Acta 61, 4267–4280 (1997).

    Article  Google Scholar 

  18. N. N. Akinfiev and L. W. Diamond, “Thermodynamic Description of Aqueous Nonelectrolytes at Infinite Dilution over a Wide Range of State Parameters,” Geochim. Cosmochim. Acta 67, 613–627 (2003).

    Article  Google Scholar 

  19. A. V. Plyasunov and E. L. Shock, “Correlation Strategy for Determining the Parameters of the Revised Helgeson-Kirkham-Flowers Model for Aqueous Nonelectrolytes,” Geochim. Cosmochim. Acta 65, 3879–3900 (2001).

    Article  Google Scholar 

  20. J. A. Barbero, K. G. McCurdy, and P. R. Tremaine, “Apparent Molal Heat Capacities and Volumes of Aqueous Hydrogen Sulfide and Sodium Hydrogen Sulfide near 25°C: The Temperature Dependence of H2S Ionization,” Can. J. Chem. 60, 1872–1880 (1982).

    Article  Google Scholar 

  21. L. Hné-dkovsky, R. H. Wood, and V. Majer, “Volumes of Aqueous Solutions of CH4, CO2, H2S, and NH3 at Temperatures from 298.15 to 705 K and Pressures to 35 MPa,” J. Chem. Thermodyn. 28, 125–142 (1996).

    Article  Google Scholar 

  22. N. Kishima, “A Thermodynamic Study on the Pyrite-Pyrrhotite-Magnetite-Water System at 300–500°C with Relevance to the Fugacity/Concentration Quotient of Aqueous H2S,” Geochim. Cosmochim. Acta 53, 2143–2155 (1989).

    Article  Google Scholar 

  23. T. N. Kozintseva, “Study of H2S Solubility in Water at Elevated Temperatures,” Geokhimiya, No. 6, 758–765 (1964).

  24. E. C. W. Clarke and D. N. Glew, “Aqueous Nonelectrolyte Solutions. Part VIII. Deuterium and Hydrogen Sulfides Solubilities in Deuterium Oxide and Water,” Can. J. Chem. 49, 691–698 (1971).

    Article  Google Scholar 

  25. S. E. Drummond, Boiling and Mixing of Hydrothermal Fluids: Chemical Effects of Mineral Precipitation, Ph. D. Thesis. (Pennsylvania State Univ. 1981).

  26. O. M. Suleimenov and R. E. Krupp, “Solubility of Hydrogen Sulfide in Pure Water and in NaCl Solutions, from 20 to 320°C and at Saturation Pressures,” Geochim. Cosmochim. Acta 58, 2433–2444 (1994).

    Article  Google Scholar 

  27. Yu. V. Shvarov, UT-HEL: A Program for the Calculation of HKF Parameters of Aqueous Species (Version 2.0) (Geol. Fac. MGU, Moscow, 1995) [in Russian] (unpublished).

    Google Scholar 

  28. B. W. Mountain and T. M. Seward, “The Hydrosulphide/Sulphide Complexes of Copper (I): Experimental Determination of Stoichiometry and Stability at 22°C and Reassessment of High Temperature Data,” Geochim. Cosmochim. Acta 63, 11–30 (1999).

    Article  Google Scholar 

  29. D. M. Shenberger and H. L. Barnes, “Solubility of Gold in Aqueous Sulfide Solutions from 150 to 350°C,” Geochim. Cosmochim. Acta 53, 269–278 (1989).

    Article  Google Scholar 

  30. M. E. Berndt, T. Buttram, D. Earley, and W. E. Seyfried, Jr., “The Stability of Gold Polysulfide Complexes in Aqueous Solutions: 100 to 150°C and 100 Bars,” Geochim. Cosmochim. Acta 58, 587–594 (1994).

    Article  Google Scholar 

  31. N. N. Baranova and A. V. Zotov, “Stability of Gold Sulphide Species (AuH and Au(HS) at 300, 350°C and 500 Bar: Experimental Study,” Mineral. Mag. 62A, 116–117 (1998).

    Article  Google Scholar 

  32. F. Gibert, M.-L. Pascal, and M. Pichavant, “Gold Solubility in Hydrothermal Solutions: Experimental Study of Stability of Hydrosulphide Complex of Gold (AuHS°) at 350 to 450°C and 500 Bars,” Geochim. Cosmochim. Acta 62, 2931–2947 (1998).

    Article  Google Scholar 

  33. K. Hayashi and H. Ohmoto, “Solubility of Gold in NaCl- and H2S-Bearing Aqueous Solutions at 250–350°C,” Geochim. Cosmochim. Acta 55, 2111–2126 (1991).

    Article  Google Scholar 

  34. D. Crerar and H. Barnes, “Ore Solution Chemistry V. Solubilities of Chalcopyrite and Chalcocite in Hydrothermal Solutions at 200°C to 350°C,” Econ. Geol. 71, 772–794 (1976).

    Article  Google Scholar 

  35. A. Sugaki, S. D. Scott, K. Hayashi, and A. Kitakaze, “Ag2S Solubility in Sulfide Solutions Up to 250°C,” Geochem. J. 21, 291–305 (1987).

    Google Scholar 

  36. G. Schwarzenbach, O. Gübeli, and H. Züst, “Thiokomplexe des Silbers und die Loeslichkeit von Silbersulfid,” Chimia 12, 84–86 (1958).

    Google Scholar 

  37. G. Schwarzenbach and G. Widmer, “Die Löeslichkeit von Metalsulfiden. II. Silbersulfid,” Helv. Chim. Acta 49, 111–123 (1966).

    Article  Google Scholar 

  38. Ya. I. Ol’shanskii, V. V. Ivanenko, and A. V. Khromov, “On the Solubility of Sulfurous Silver in Aqueous Solutions Saturated in H2S,” Dokl. Akad. Nauk SSSR 124(2), 410–413 (1959).

    Google Scholar 

  39. B. N. Melent’ev, V. V. Ivanenko, and L. A. Pamfilova, Solubility of Some Ore-Forming Sulfides under Hydrothermal Conditions (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  40. N. N. Akinfiev, “Algorithm of Calculations of Heterogeneous Equilibria for Electronic Microcomputers,” Geokhimiya, No. 6, 882–890 (1986).

  41. N. N. Akinfiev, “Model for Calculation ab initio Ionic Association in Supercritical Aqueous Fluids: 1: 1 Electrolytes,” Geokhimiya, No. 3, 426–440 (1995).

  42. J. K. Hovey, Thermodynamics of Aqueous Solutions, PhD. Thesis. (University of Alberta, Edmonton, 1988).

    Google Scholar 

  43. L. G. Benning and T. M. Seward, “Hydrosulphide Complexing of Au(I) in Hydrothermal Solutions from 150–400°C and 500–1500 Bar,” Geochim. Cosmochim. Acta 60, 1849–1871 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zotov.

Additional information

Original Russian Text © N.N. Akinfiev, A.V. Zotov, 2010, published in Geokhimiya, 2010, Vol. 48, No. 7, pp. 761–767.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akinfiev, N.N., Zotov, A.V. Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0–600°C and pressures of 1–3000 bar. Geochem. Int. 48, 714–720 (2010). https://doi.org/10.1134/S0016702910070074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702910070074

Keywords

Navigation