Skip to main content
Log in

Thermodynamic functions of eskolaite Cr2O3(c) at 0–1800 K

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The heat capacity of eskolaite Cr2O3(c) was determined by adiabatic vacuum calorimetry at 11.99–355.83 K and by differential calorimetry at 320–480 K. Experimental data of the authors and data compiled from the literature were applied to calculate the heat capacity, entropy, and the enthalpy change of Cr2O3 within the temperature range of 0–1800 K. These functions have the following values at 298.15 K: C 0 p (298.15) = 121.5 ± 0.2 J K−1mol−1, S 0(298.15) = 80.95 ± 0.14 J K−1mol−1, and H 0(298.15)-H 0(0) = 15.30±0.02 kJ mol−1. Data were obtained on the transitions from the antiferromagnetic to paramagnetic states at 228–457 K; it was determined that this transition has the following parameters: Neel temperature T N = 307 K, Δ tr S = 6.11 ± 0.12 J K−1mol−1 and δ tr H = 1.87 ± 0.04 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Minerals. A Reference Book. Vol. 2. Issue 2. Simple Oxides (Nauka, Moscow, 1965) [in Russian].

  2. O. L. Kuskov, V. A. Kronrod, and H. Annersten, “Inferring Upper-Mantle Temperatures from Seismic and Geochemical Constraints: Implications for Kaapvaal Craton,” Earth Planet. Sci. Lett. 244, 133–154 (2006).

    Article  Google Scholar 

  3. O. L. Kuskov and V. A. Kronrod, “Determining the Temperature of the Earth’s Continental Upper Mantle from Geochemical and Seismic Data,” Geochem. Int. 44, 232–248 (2006).

    Article  Google Scholar 

  4. C. T. Anderson, “The Heat Capacities of Chromium, Chromic Oxide, Chromous Chloride and Chromic Chloride at Low Temperatures,” J. Am. Chem. Soc. 59, 488–491 (1937).

    Article  Google Scholar 

  5. J. Volger, “Anomalous Specific Heat of Chromium Oxide (Cr2O3) at the Antiferromagnetic Curie Temperature,” Nature 170, 1027 (1952).

    Article  Google Scholar 

  6. R. H. Bruce and D. S. Cannell, “Specific Heat of Cr2O3 near the Neel Temperatures,” Physical Review 15(9), 4451–4459.

  7. S. Klemme, H. St. C. O’Neill, W. Schnelle, and E. Gmelin, “The Heat Capacity of MgCr2O4, FeCr2O4, and Cr2O3 at Low Temperatures and Derived Thermodynamic Properties,” Am. Mineral. 85, 1686–1693 (2000).

    Google Scholar 

  8. G. E. Moore and K. K. Kelly, “High-Temperature Heat Contents of the Chromium Carbides and Chromic Oxide,” U.S. Bur. Mines Rept. Inv. 662, (1944).

  9. S. E. Ziemniak, L. M. Anovitz, R. A. Castelli, and W. D. Porter, “Thermodynamics of Cr2O3, FeCr2O4, ZnCr2O4, and CoCr2O4,” J. Chem. Thermodyn. 39 (11), 1474–1492 (2007).

    Google Scholar 

  10. M. Sh. Yagfarov, “New Method for the Measurement of Heat Capacity and Heat Effects,” Zh. Fiz. Khim. 43, 1620–1623 (1969).

    Google Scholar 

  11. A. G. Kabo and V. V. Diky, “Details of Calibration of Scanning Calorimeter of the Triple Heat Bridge Type,” Thermochim. Acta 347, 79–84 (2000).

    Article  Google Scholar 

  12. V. V. Malyshev, G. A. Mil’ner, E. L. Sorkin, and V. F. Shibakin, “Automated Low-Temperature Calorimeter,” Prib. Tekh. Eksp., No. 6, 195–197 (1985).

  13. http://www.physics.nist.gov/PhysRefData/Compositions.

  14. V. M. Gurevich, O. L. Kuskov, K. S. Gavrichev, and A. V. Tyurin, “Heat Capacity and Thermodynamic Functions of Epsomite MgSO4 · 7H2O at 0–303 K,” Geokhimiya, No. 2, 97–100 (2007) [Geochem. Int. 45, 206–209 (2007)].

  15. S. W. Kieffer, “Thermodynamics and Lattice Vibrations of Minerals: 3. Lattice Dynamics and an Approximation for Minerals with Application to Simple Substance and Framework,” Rev. Geophys. Sp. Phys. 17(1), 35–59 (1979).

    Article  Google Scholar 

  16. V. M. Gurevich, K. S. Gavrichev, and V. E. Gorbunov, “Thermodynamic Properties of Cassiterite SnO2(c) at 0–1500 K,” Geokhimiya, No. 10, 1096–1105 (2004) [Geochem. Int. 42, 962–970 (2004)].

  17. V. M. Gurevich, V. E. Gorbunov, K. S. Gavrichev, et al., “A Calorimeter for Heat Capacity Measurements from 50 to 300 K: The Heat Capacities of Kogarkoite Na3SO4F(c) at Low Temperatures,” Geokhimiya, No. 4, 423–434 (1999) [Geochem. Int. 37, 367–377 (1999)].

  18. V. M. Gurevich and V. G. Khlyustov, “Calorimeter for Determining the Low-Temperature Heat Capacity of Minerals. Heat Capacity of Quartz at 9–300 K,” Geokhimiya, No. 6, 829–839 (1979).

  19. V. M. Gurevich, K. S. Gavrichev, and V. E. Gorbunov, T. V. Danilova, and L. N. Golushina, “Low-Temperature Heat Capacity of Strontianite SrCO3(c),” Geokhimiya, No. 7, 744–751 (2001) [Geochem. Int. 39, 676–682 (2001)].

  20. A. N. Kornilov and V. A. Sokolov, “Some Problems of Statistical Processing of Thermodynamic Data. II. Errors in Interpolation and Extrapolation of Non-Linear Function,” Zh. Fiz. Khim. 41(12), 3102–3107 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Gurevich.

Additional information

Original Russian Text © V.M. Gurevich, O.L. Kuskov, N.N. Smirnova, K.S. Gavrichev, A.V. Markin, 2009, published in Geokhimiya, 2009, No. 12, pp. 1249–1258.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurevich, V.M., Kuskov, O.L., Smirnova, N.N. et al. Thermodynamic functions of eskolaite Cr2O3(c) at 0–1800 K. Geochem. Int. 47, 1170–1179 (2009). https://doi.org/10.1134/S0016702909120027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909120027

Keywords

Navigation