Skip to main content
Log in

Oceanic potassic magmas: An example of the Atlantic Ocean

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Statistical study of volcanic rocks from oceanic islands and seamounts in the Atlantic Ocean based on approximately 6000 analyses (data from the authors’ databank) makes it possible to recognize rocks close to the parental melts (approximately 2000 analyses). This set is demonstrated to include a unique group of high-potassium (K2O/Na2O > 1) rocks, whose K2O/Na2O ratio is several times higher than in the mantle and calls for the explanation of the mechanism that increased the K2O concentration during the melting of the mantle and for the identification of an additional K2O source in the mantle and a process responsible for K and Na differentiation. A new model is proposed to account for the genesis of high-potassium melts-fluids, whose ascent brings about extensive mantle metasomatism. The genesis of high-potassium fluid is related to solid-state reactions at deep mantle levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Gast, “Trace Element Fractionation and the Origin of Tholeiitic and Alkaline Magma Types,” Geochim. Cosmochim. Acta 32, 1057–1086 (1968).

    Article  Google Scholar 

  2. L. N. Kogarko and A. M. Asavin, “Regional Features of Primary Alkaline Magmas of the Atlantic Ocean,” Geokhimiya, No. 9, 915–932 (2007) [Geochem. Int. 45, 841–856 (2007)].

  3. W. F. McDonough and S. Sun, “The Composition of the Earth,” Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  4. http://earth.jscc.ru/gim

  5. K. Asch, “The Geological Map: The Visual Language of Geologists (with Too Many Dialects for Even the Most Sophisticated Computers),” in Extended Abstracts of Conference GIS-in Geology (Moscow, 2002), p. 15.

  6. J. B. Gill, Orogenic Andesites and Plate Tectonics (Springer, Berlin, 1981).

    Google Scholar 

  7. S. F. Foley, G. Venturell, D. H. Green, and L. Toscani, “The Ultrapotassic Rocks: Characteristics, Classification and Constraints for Petrogenetic Models,” Earth-Sci. Rev. 24, 81–134 (1987).

    Article  Google Scholar 

  8. A. K. Gupta and W. S. Fyfe, The Young Potassic Rocks (Ane Books, New Delhi, 2003).

    Google Scholar 

  9. D. H. Green and A. E. Ringwood, “The Genesis of Basaltic Magmas,” Contrib. Mineral. Petrol. 15, 103–190 (1967).

    Article  Google Scholar 

  10. R. C. Mitchell-Thome, Geology of the South Atlantic Islands (Berlin, 1970).

  11. P. de Paepe, J. Klerkx, J. Hertogen, and P. Plinke, “Oceanic Tholeiites on the Cape Verde Islands: Petrochemical and Geochemical Evidence,” Earth Planet. Sci. Lett. 22, 347–354 (1974).

    Article  Google Scholar 

  12. Igneous Rocks. A Classification and Glossary Sciences Subcommission on the Systematic of Igneous Rocks, Ed. by R. W. Le Maitre, (University Press, Cambridge, 2002).

    Google Scholar 

  13. M. J. Le Bas and A. L. Streckeisen, The IUGS Systematics of Igneous Rocks, J. Geol. Soc. London, 148, 825–833 (1991).

    Article  Google Scholar 

  14. K. Putirka, “Clinopyroxene + Liquid Equilibria to 100 Kbar and 2450 K,” Contrib. Mineral. Petrol. 135, 151–163 (1999).

    Article  Google Scholar 

  15. K. Putirka, “Garnet + Liquid Equilibrium,” Contrib. Mineral. Petrol. 11, 27–288 (1998).

    Google Scholar 

  16. I. D. Ryabchikov, T. Ntaflos, A. Büchl, and I. P. Solovova, “Subalkaline Picrobasalts and Plateau Basalts from the Putorana Plateau (Siberian Continental Flood Basalt Province). I. Mineral Compositions and Geochemistry of Major and Trace Elements,” Geokhimiya 39(5), 467–483 (2001) [Geochem. Int. 39, 415–431 (2001)].

    Google Scholar 

  17. J. Adam and T. H. Green, “The Effects of Pressure and Temperature on the Partitioning of Ti, Sr and REE between Amphibole, Clinopyroxene and Basanitic Melts,” Chem. Geol. 117, 219–233 (1994).

    Article  Google Scholar 

  18. W. E. Gallahan and R. L. Nielsen, “The Partitioning of Sc, Y, and the Rare Earth Elements between High-Ca Pyroxene and Natural Mafic to Intermediate Lavas at 1 Atmosphere,” Geochim. Cosmochim. Acta 56, 2387–2404 (1992).

    Article  Google Scholar 

  19. M. J. Walter, “Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere,” J. Petrol. 39(1), 29–60 (1998).

    Article  Google Scholar 

  20. L. N. Kogarko, “Role of Deep-Seated Fluids in the Genesis of Mantle Heterogeneity and Alkali Magmatism,” Geol. Geofiz. 46(12), 1234–1245 (2005).

    Google Scholar 

  21. A. K. Gupta, K. Yagi, Y. Hariya, and K. Onuma, “Experimental Investigation of Some Synthetic Leucite-Rocks under Water Vapor Pressure,” Proc. Jap. Acad. Sci. 52, 469–472 (1976).

    Google Scholar 

  22. M. Arima and A. Edgar, “High Pressure Experimental Studies on a Katangite and Their Bearing on the Genesis of Some Potassium-Rich Magmas of the West Fracture of the African Rift,” J. Petrol. 24, 166–187 (1983).

    Google Scholar 

  23. Mantle Metasomatism, Ed. by M. A. Menzies and C. J. Hawkesworth (Academic, London, 1987).

    Google Scholar 

  24. S. F. Foley, “Vein-Plus-Wall-Rock Melting Mechanism in the Lithosphere and the Origin of Potassic Alkaline Magmas,” Lithos 28, 425–453 (1992).

    Google Scholar 

  25. N. V. Sobolev and V. S. Shatsky, “Diamond Inclusions in Garnets from Metamorphic Rocks: A New Environment for Diamond Formation,” Nature 4, 742–746 (1990).

    Article  Google Scholar 

  26. O. Navon and E. S. Izraeli, “Cl- and K-Rich Micro-Inclusions in Cloudy Diamonds,” EOS, Trans. Am. Geophys. Union 80, F1128 (1999).

    Google Scholar 

  27. P. Schiano and B. Bourdon, “On the Preservation of Mantle Information in Ultramafic Nodules: Glass Inclusions within Minerals versus Interstitial Glasses,” Earth Planet. Sci. Lett. 169, 173–188 (1999).

    Article  Google Scholar 

  28. L. A. Taylor, H. J. Milledge, G. P. Bulanova, et al., “Metasomatic Eclogitic Diamond Growth: Evidence from Multiple Diamond Inclusions,” Int. Geol. Rev. 40(8), 663–676 (1998).

    Article  Google Scholar 

  29. G. Turner, R. Burgess, M. Laurenzi, et al., “Ar40-Ar39 Laser Probe Dating of Individual Inclusion in Diamonds,” Chem. Geol. 70 (1988).

  30. R. Burgess, E. Layzelle, G. Turner, and J. W. Harris, “Constraints on the Age and Halogen Composition of Mantle Fluids in Siberian Coated Diamonds,” Earth Planet. Sci. Lett. 197 (2002).

  31. E. S. Izraeli, J. W. Harris, and O. Navon, “Brine Inclusions in Diamonds: A New Upper Mantle Fluid,” Earth Planet. Sci. Lett. 187, 323–332 (2001).

    Article  Google Scholar 

  32. E. M. Galimov, “Isotope Fractionation Related to Kimberlite Magmatism and Diamond Formation,” Geochim. Cosmochim. Acta 55, 1697–1708 (1991).

    Article  Google Scholar 

  33. A. Corgne and B. J. Wood, “Trace Element Partitioning between Majoritic Garnet and Silicate Melt at 25 GPa,” Phys. Earth Planet. Int. 143-144, 407–419 (2004).

    Article  Google Scholar 

  34. O. G. Safonov, L. L. Perchuk, and Yu. A. Litvin, “Effect of Carbonates on Crystallization and Composition of Potassium-Bearing Clinopyroxene at High Pressures,” Dokl. Akad. Nauk 408, 580–585 (2006) [Dokl. Earth Sci. 408, (2006)].

    Google Scholar 

  35. A. Corgne, C. Liebske, B. J. Wood, et al., “Silicate Perovskite- Melt Partitioning of Trace Elements and Geochemical Signature of a Deep Perovskitic Reservoir,” Geochim. Cosmochim. Acta 69(2), 485–496 (2005).

    Article  Google Scholar 

  36. A. E. Ringwood, S. E. Kesson, W. Hibberson, and N. Ware, “Origin of Kimberlites and Related Magmas,” Earth Planet. Sci. Lett. 113, 521–538 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Kogarko.

Additional information

Original Russian Text © L.N. Kogarko, A.M. Asavin, 2009, published in Geokhimiya, 2009, No. 9, pp. 899–909.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogarko, L.N., Asavin, A.M. Oceanic potassic magmas: An example of the Atlantic Ocean. Geochem. Int. 47, 847–856 (2009). https://doi.org/10.1134/S0016702909090018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909090018

Keywords

Navigation