Skip to main content
Log in

Semiempirical model for the description of sorption equilibria on clay mineral surfaces

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Based on a review of recent experimental data on heavy metal sorption on clay minerals (montmorillonite, illite, and kaolinite), a method was developed to estimate the unified characteristics of the density of surface sorption sites and constants of reactions occurring on them, such as Meaq ⇄ Mesurf. A model combining the description of ion exchange sorption in the presence of Na electrolytes and pH-dependent chemical adsorption on the amphoteric sites of the edge faces of the three mentioned phases provided a satisfactory approximation of experimental data of various authors and an approach to the understanding of the essence of differences in the properties of sorbents and behavior of metal cations. It was supposed that this approach is helpful as a reconnaissance stage during the analysis of other more complex systems (multicomponent solutions, polymineralic soils, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Koretsky, “Review: The Significance of Surface Complexation Reactions in Hydrologic Systems: A Geochemist’s Perspective,” J. Hydrol. 230, 127–171 (2000).

    Article  Google Scholar 

  2. G. A. Solomin and S. R. Krainov, “Computer Modeling of Ion-Exchange Processes with Application to Hydrogeochemical Problems,” Geokhimiya, No. 2, 196–211 (2004) [Geochem. Int. 42, 154–168 (2004)].

  3. P. W. Schindler, P. Liechti, and J. C. Westall, “Adsorption of Copper, Cadmium and Lead from Aqueous Solutions to the Kaolinite/Water Interface,” Neth. J. Agric. Sci. 35, 219–230 (1987).

    Google Scholar 

  4. W. Stumm, C. P. Huang, and S. R. Jenkins, “Specific Chemical Interactions Affecting the Stability of Dispersed Systems,” Croat. Chem. Acta 42, 223–244 (1970).

    Google Scholar 

  5. J. Ikhsan, B. B. Johnson, and J. D. Wells, “A Comparative Study of the Adsorption of Transition Metals on Kaolinite,” J. Colloid Interface Sci. 217, 403–410 (1999).

    Article  Google Scholar 

  6. P. Srivastava, B. Singh, and M. Angove, “Competitive Adsorption Behavior of Heavy Metals on Kaolinite,” J. Colloid Interface Sci. 290, 28–38 (2005).

    Article  Google Scholar 

  7. I. Heidmann, I. Christl, and R. Kretzschmar, “Sorption of Cu and Pb to Kaolinite-Fulvic Acid Colloids: Assessment of Sorbent Interactions,” Geochim. Cosmochim. Acta 69, 1675–1686 (2005).

    Article  Google Scholar 

  8. I. Heidmann, I. Christl, Ch. Leu, and R. Kretzschmar, “Competitive Sorption of Protons and Metal Cations onto Kaolinite: Experiments and Modeling,” J. Colloid Interface Sci. 282, 270–282 (2005).

    Article  Google Scholar 

  9. J. Hizal and R. Apak, “Modeling of Copper(II) and Lead(II) Adsorption on Kaolinite-Based Clay Minerals Individually and in the Presence of Humic Acid,” J. Colloid Interface Sci. 295, 1–13 (2006).

    Article  Google Scholar 

  10. J. Hizal and R. Apak, “Modeling of Cadmium (II) Adsorption on Kaolinite-Based Clays in the Absence and Presence of Humic Acid,” Appl. Clay Sci. 32, 232–244 (2006).

    Article  Google Scholar 

  11. D. L. Sparks, “Toxic Metals in the Environment: The Role of Surfaces,” Elements 1(4), 193–196 (2005).

    Article  Google Scholar 

  12. S. R. Krainov, B. N. Ryzhenko, and V. M. Shvets, Geochemistry of Ground Waters. Theoretical, Practical, and Ecological Aspects, Ed. by N. P. Laverov (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  13. M. H. Bradbury, B. Baeyens, H. Geckeis, and Th. Rabung, “Sorption of Eu(III)/Cm(III) on Ca-Montmorillonite and Na-Illite. Part 2: Surface Complexation Modeling,” Geochim. Cosmochim. Acta 69, 5403–5412 (2005).

    Article  Google Scholar 

  14. F. Coppin, G. Berger, A. Bauer, et al., “Sorption of Lanthanides on Smectite and Kaolinite,” Chem. Geol 182, 57–68 (2002).

    Article  Google Scholar 

  15. F. Coppin, S. Castet, G. Berger, and M. Loubet, “Microscopic Reversibility of Sm and Yb Sorption onto Smectite and Kaolinite: Experimental Evidence,” Geochim. Cosmochim. Acta 67, 2515–2527 (2003).

    Article  Google Scholar 

  16. Ch.-Ch. Chen and K. F. Hayes, “X-Ray Adsorption Spectroscopy Investigation of Aqueous Co(II) and Sr(II) Sorption at Clay-Water Interface,” Geochim. Cosmochim. Acta 63, 3205–3215 (1999).

    Article  Google Scholar 

  17. J. Echeverria, I. Zarranz, J. Estella, and J. J. Garrido, “Simultaneous Effect of pH, Temperature, Ionic Strength, and Initial Concentration on the Retention of Lead on Illite,” Appl. Clay Sci. 30, 103–105 (2005).

    Article  Google Scholar 

  18. A. Mermut and G. Lagaly, “Baseline Studies of the Clay Minerals Society Source Clays: Layer-Charge Determination and Characteristics of Those Minerals Containing 2: 1 Layers,” Clays Clay Miner. 49, 393–397 (2001).

    Article  Google Scholar 

  19. Ch. Poinssot, B. Baeyens, and M. H. Bradbury, “Experimental and Modeling Studies of Cesium Sorption on Illite,” Geochim. Cosmochim. Acta 63, 3217–3227 (1999).

    Article  Google Scholar 

  20. G. Sposito, N. T. Skipper, R. Sutton, et al., “Surface Geochemistry of the Clay Minerals,” Proc. Nat. Acad. Sci. U.S.A. 96, 3358–3364 (1999).

    Article  Google Scholar 

  21. C. Tournassat, A. Neaman, F. Villieras, et al., “Nanomorphology of Montmorillonite Particles: Estimation of the Clay Edge Sorption Site Density by Low-Pressure Gas Adsorption and AFM Observations,” Am. Mineral. 88, 1989–1995 (2003).

    Google Scholar 

  22. E. Tertre, G. Berger, E. Simoni, et al., “Europium Retention onto Clay Minerals from 25 to 150°C: Experimental Measurements, Spectroscopic Features and Sorption Modeling,” Geochim. Cosmochim. Acta 70, 4563–4578 (2006).

    Article  Google Scholar 

  23. E. Tertre, S. Castet, G. Berger, et al., “Surface Chemistry of Kaolinite and Na-Montmorillonite in Aqueous Electrolyte Solutions at 25 and 60°C: Experimental and Modeling Study 2006,” Geochim. Cosmochim. Acta 70, 4579–4599 (2006).

    Article  Google Scholar 

  24. E. Tombacz and M. Szekeres, “Colloidal Behavior of Aqueous Montmorillonite Suspensions: the Specific Role of pH in the Presence of Indifferent Electrolytes,” Appl. Clay Sci. 27, 85–94 (2004).

    Article  Google Scholar 

  25. E. Tombacz and M. Szekeres, “Surface Charge Heterogeneity of Kaolinite in Aqueous Suspensions in Comparison with Montmorillonite,” Appl. Clay Sci. 34, 105–124 (2006).

    Article  Google Scholar 

  26. J. S. Wahlberg, J. H. Baker, R. W. Vermon, and R. S. Dewar, “Exchange Adsorption of Strontium on Clay Minerals,” U.S. Geol. Surv. Bull. 1140-C (1965).

  27. S. A. Pivovarov, Extended Abstracts of Candidates Dissertation in Chemistry (Moscow) [in Russian].

  28. G. A. Parks, “The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems,” Chem. Rev. 65, 177–198 (1965).

    Article  Google Scholar 

  29. D. A. Sverjensky, “Zero-Point-Of-Charge Prediction from Crystal Chemistry and Solvation Theory,” Geochim. Cosmocim. Acta 58, 3123–3129 (1994).

    Article  Google Scholar 

  30. D. A. Sverjensky and N. Sahai, “Theoretical Prediction of Single-Site Surface-Protonation Equilibrium Constants for Oxides and Silicates in Water,” Geochim. Cosmochim. Acta 60, 3773–3797 (1996).

    Article  Google Scholar 

  31. G. Sposito, “Characterization of Particle Surface Charge,” in Environmental Particles, Ed. by J. Buffe and H. P. Van Leeuwen, (Boca Raton, Lewis 1992), pp. 291–314.

    Google Scholar 

  32. M. H. Bradbury and B. Baeyens, “Modelling the Sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on Montmorillonite: Linear Free Energy Relationships and Estimates of Surface Binding Constants for Some Selected Heavy Metals and Actinides,” Geochim. Cosmochim. Acta 69, 875–892 (2005).

    Article  Google Scholar 

  33. J. A. Davis, J. A. Coston, D. B. Kent, and C. C. Fuller, “Application of the Surface Complexation Concept to Complex Mineral Assemblages,” Environ. Sci. Technol. 32, 2820–2828 (1998).

    Article  Google Scholar 

  34. O. L. Gaskova and I. A. Varvaryuk, “Adsorption of U(VI) and Pu(IV, V) Ions on the Surface of Fe(III) Minerals,” Vestn. Otd. Nauk Zemle RAN, No. 1(21) (2003).

  35. O. L. Gaskova, G. R. Kolonin, and K. G. Morgunov, “Quantitative Estimation of the Degree of Heavy Metals and Radionuclide Absorption on the Surface of Insoluble Oxides,” Vestn. Otd. Nauk Zemle RAN, No. 1(20) (2002).

  36. Yu. V. Shvarov, “Algorithmization of the Numeric Equilibrium Modeling of Dynamic Geochemical Processes,” Geokhimiya, No. 6, 646–652 (1999) [Geochem. Int. 37, 571–576 (1999)].

  37. O. L. Gaskova and M. B. Bukaty, “Thermodynamic Modeling of Equilibria at the Mineral/Solution Interface Using Gibbs Free Energy Minimization,” Geoekologiya, No. 3, 261–268 (2008).

  38. O. V. Sokolova, T. V. Shestakova, D. V. Grichuk, and Yu. V. Shvarov, “Thermodynamic Modeling of the Modes of Heavy Metal Occurrence in the Water-Bottom Sediments System during Transport Pollution,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 3, 36–45 (2006).

  39. J. M. Zachara, C. S. Smith, J. P. McKinley, and C. T. Resch, “Cadmium Sorption on Specimen and Soil Smectites in Sodium and Calcium Electrolytes,” Soil. Sci. Soc. Am. J. 57, 1491–1501 (1993).

    Article  Google Scholar 

  40. D. A. Kulik, “Classic Adsorption Isotherms Incorporated in Modern Surface Complexation Models: Implication for Sorption of Actinides,” Radiochim. Acta 94, 765–778 (2006).

    Article  Google Scholar 

  41. S. B. Bortnikova, O. L. Gaskova, and A. A. Airiyants, Anthropogenic Lakes: Formation and Environmental Impact (SO RAN, GEO, Novosibirsk, 2003) [in Russian].

    Google Scholar 

  42. O. L. Gaskova, Extended Abstracts of Doctoral Dissertation in Mineralogy and Petrography (Novosibirsk, 2005) [in Russian].

  43. S. B. Bortnikova, O. L. Gaskova, and E. P. Bessonova, Geochemistry of Anthropogenic Systems (SO RAN, GEO, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  44. Th. Rabung, M. C. Pierret, H. Bauer, et al., “Sorption of Eu(III)/Cm(III) on Ca-Montmorillonite and Na-Illite. Part 1: Batch Sorption and Time-Resolved Laser Fluorescence Spectroscopy Experiments,” Geochim. Cosmochim. Acta 69, 5393–5402 (2005).

    Article  Google Scholar 

  45. O. L. Gaskova, “Influence of Redox Buffers and the Composition of Natural Waters on the Migration of Uranium and Plutonium Accompanying the Disposal of Spent Nuclear Fuel,” Geokhimiya, No. 5, 548–555 (2006) [Geochem. Int. 44, 501–507 (2006)].

  46. W. Hummel, U. Berner, E. Curti, et al., NAGRA (National Cooperative for the Disposal of Radioactive Waste)/PSI Chemical Thermodynamic Data Base, 01/01, Nagra Techniqcal Report NTB 02-16 (Switzerland, 2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Gaskova.

Additional information

Original Russian Text © O.L. Gaskova, 2009, published in Geokhimiya, 2009, No. 6, pp. 647–659.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaskova, O.L. Semiempirical model for the description of sorption equilibria on clay mineral surfaces. Geochem. Int. 47, 611–622 (2009). https://doi.org/10.1134/S0016702909060068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909060068

Keywords

Navigation