Skip to main content
Log in

Geochronology and genesis of the young (Pliocene) granitoids of the Greater Caucasus: Dzhimara multiphase Massif of the Kazbek neovolcanic area

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This paper reports an integrated petrological, geochronological, and isotopic geochemical study of the Pliocene Dzhimara granitoid massif (Greater Caucasus) located in the immediate vicinity of Quaternary Kazbek Volcano. Based on the obtained results, it was suggested that the massif has a multiphase origin, and temporal variations in the chemical composition of its granitoids and their possible sources were determined. Two petrographic types of granitoids, biotite-amphibole and amphibole, were distinguished among the studied rocks of the Dzhimara Massif belonging to the calc-alkaline and K-Na subalkaline petrochemical series. The latter are granodiorites, and the biotite-amphibole granitoids are represented by calc-alkaline granodiorites and quartz diorites and subalkaline quartz diorites. Geochemically, the granitoids of the Dzhimara Massif are of a “mixed” type, showing signatures of S-, I-, A-, and even M-type rocks. Their chemical characteristics suggest a mantle-crustal origin, which is explained by the formation of their parental magmas in a complex geodynamic environment of continental collision associated with a mantle “hot field” regime.

The granitoids of the Dzhimara Massif show wide variations in Sr and Nd isotopic compositions. In the Sr-Nd isotope diagram, their compositions are approximated by a line approaching the mixing curve between the “Common” depleted mantle, which is considered as a potential source of intra-plate basalts, and crustal reservoirs. It was suggested that the mantle source (referred here as “Caucasus”) that contributed to the petrogenesis of the granitoids of the Dzhimara Massif and most other youngest magmatic complexes of the region showed the following isotopic characteristics: 87Sr/86Sr − 0.7041 ± 0.0001 and

+ 4.1 ± 0.1 at 147Sm/144Nd = 0.105–0.114.

The Middle-Late Pliocene K-Ar ages (3.3–1.9 Ma) obtained for the Dzhimara Massif are close to the ages of granitoids from other Pliocene “neointrusions” of the Greater Caucasus. Based on the geochronological and petrological data, the Dzhimara Massif is formed during four intrusive phases: (1) amphibole granodiorites (3.75–3.65 Ma), (2) Middle Pliocene amphibole-biotite granodiorites and quartz diorites (∼3.35 Ma), (3) Late Pliocene amphibole-biotite granodiorites and quartz diorites (∼2.5 Ma), and (4) K-Na subalkaline biotite-amphibole quartz diorites (∼2.0 Ma).

The close spatial association of the Pliocene multiphase Dzhimara Massif and the Quaternary Kazbek volcanic center suggests the existence of a long-lived magmatic system developing in two stages: intrusive and volcanic. Approximately 1.5 Ma after the formation of the Dzhimara Massif (at ca. 400–500 ka), the activity of a deep magma chamber in this area of the Greater Caucasus resumed (possibly with some shift to the east).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bando, G. Bignall, K. Sekine, et al., “Petrography and Uplift History of the Quaternary Takidani Granodiorite: Could It Have Hosted a Supercritical (HDR) Geothermal Reservoir?,” J. Volcanol. Geotherm. Res. 120, 215–234 (2003).

    Article  Google Scholar 

  2. P. Yu. Kovtunovich, V. A. Lebedev, I. V. Chernyshev, et al., “Chronology and Evolution of the Magmatism of Iturup Island (Kurile Archipelago) from the Data of K-Ar Isotopic Dating and Diatom Analysis,” Tikhookean. Geol. 23(6), 32–44 (2004).

    Google Scholar 

  3. V. A. Lebedev, S. N. Bubnov, I. V. Chernyshev, et al., “Pliocene Granitoid Massif in the Kazbek Volcanic Center: First Geochronological and Isotope-Geochemical Data,” Dokl. Akad. Nauk 411, 375–380 (2006) [Dokl. Earth Sci. 411, 1393–1397 (2006)].

    Google Scholar 

  4. S. N. Bubnov, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (IGEM RAN, Moscow, 2003).

    Google Scholar 

  5. E. E. Milanovsky and N. V. Koronovsky, Orogenic Volcanism and Tectonics of the Alpine Belt of Eurasia (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  6. A. M. Borsuk, V. V. Ivanenko, M. I. Karpenko, et al., “Precise K-Ar Dating of the Neogene Intrusions of the Transcaucasus Transverse Zone and Possible Geodynamic Implications,” Dokl. Akad. Nauk SSSR 308, 1188–1191 (1989).

    Google Scholar 

  7. I. R. Pohl, J. S. Hess, B. Kober, et al., “Origin and Petrogenesis of the Miocene Trachyrhyolites (A-type) from the Northern Part of the Greater Caucasus,” in Magmatism of Rifts and Foldbelts (Nauka, Moscow, 1993), pp. 108–125 [in Russian].

    Google Scholar 

  8. V. A. Lebedev, I. V. Chernyshev, A. S. Avdeenko, et al., “Heterogeneity of Ar and Sr Initial Isotopic Composition in the Coexisting Minerals from Miocene Hypabyssal Granitoids in the Caucasian Mineral Waters Region,” Dokl. Akad. Nauk 410(1), 95–100 (2006) [Dokl. Earth Sci. 410, 1070–1074 (2006)].

    Google Scholar 

  9. A. M. Borsuk, Mesozoic and Cenozoic Magmatic Associations of the Greater Caucasus (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  10. Yu. A. Kostitsyn and A. A. Kremenetskii, “Age of the Final Magmatic Stage of the Eldzhurtinskii Granite: Rb-Sr Isochron Dating of Apatites,” Geokhimiya, No. 7, 925–931 (1995).

  11. C. A. Gazis, M. Lanphere, H. P. Taylor, et al., “40Ar/39Ar and 18O/16O Studies of the Chegem Ash-Flow Caldera and the Eldjurta Granite: Cooling of Two Late Pliocene Igneous Bodies in the Greater Caucasus Mountains, Russia,” Earth Planet. Sci. Lett. 134, 377–391 (1995).

    Article  Google Scholar 

  12. I. V. Chernyshev, M. M. Arakelyants, V. A. Lebedev, et al., “K-Ar Isotope Systematics and Age of Lavas from the Quaternary Kazbek Volcanic Province, Greater Caucasus,” Dokl. Akad. Nauk 367, 810–814 (1999) [Dokl. Earth Sci. 367, 862–866 (1999)].

    Google Scholar 

  13. I. V. Chernyshev, V. A. Lebedev, S. N. Bubnov, et al., “Stages of Magmatic Activity in the Elbrus Volcanic Center (Greater Caucasus): Evidence from Isotope-Geochronological Data,” Dokl. Akad. Nauk 380, 384–389 (2001) [Dokl. Earth Sci. 2001, 848–852 (2001)].

    Google Scholar 

  14. I. V. Chernyshev, V. A. Lebedev, S. N. Bubnov, et al., “Isotopic Geochronology of Quaternary Volcanic Eruptions in the Greater Caucasus,” Geokhimiya, No. 11, 1–16 (2002) [Geochem. Int. 40, 1042–1055 (2002)].

  15. V. A. Lebedev, I. V. Chernyshev, E. V. Arutyunyan, et al., “Chronology of Quaternary Volcanism of the Keli Highland, Greater Caucasus: Evidence from K-Ar Isotopic Dating,” Dokl. Akad. Nauk 399, 378–383 (2004) [Dokl. Earth Sci. 399, 1227–1231 (2004)].

    Google Scholar 

  16. V. A. Lebedev, I. V. Chernyshev, A. V. Chugaev, et al., “Duration of Young (Pliocene) Intrusive Magmatism in the Tyrnyauz Ore Field, Northern Caucasus: New K-Ar and Rb-Sr Data,” Dokl. Akad. Nauk 396, 244–248 [Dokl. Earth Sci. 396, 529–533 (2004)].

  17. V. A. Lebedev, I. V. Chernyshev, S. N. Bubnov, et al., “Chronology of Magmatic Activity of the Elbrus Volcano (Greater Caucasus): Evidence from K-Ar Isotope Dating of Lavas,” Dokl. Akad. Nauk 405, 389–394 (2005) [Dokl. Earth Sci. 405, 1321–1326 (2005)].

    Google Scholar 

  18. V. A. Lebedev, S. N. Bubnov, I. V. Chernyshev, et al., “Basic Magmatism in the Geological History of the Elbrus Neovolcanic Area, Greater Caucasus: Evidence from K-Ar and Sr-Nd Isotope Data,” Dokl. Akad. Nauk 406, 78–82 [Dokl. Earth Sci. 406, 37–40 (2006)].

  19. V. A. Lebedev, I. V. Chernyshev, A. V. Chugaev, et al., “K-Ar Age and Sr-Nd Characteristics of Subalkali Basalts in the Central Georgian Neovolcanic Area (Greater Caucasus),” Dokl. Akad. Nauk 408, 517–522 [Dokl. Earth Sci. 408, 657–661 (2006)].

    Google Scholar 

  20. N. D. Sobolev, A. A. Lebedev-Zinov’ev, A. S. Nazarova, et al., Neogene Intrusions and Pre-Mesozoic Basement of the Caucasian Mineral Waters Area, Tr. Vses. Inst. Mineral. Syr., Nov. Ser., Issue 3 (1959) [in Russian].

  21. E. K. Stankevich, The Youngest Magmatism of the Greater Caucasus (Nedra, Leningrad, 1976) [in Russian].

    Google Scholar 

  22. J. C. Hess, H. J. Lippolt, and A. M. Borsuk, “The Neogene Volcanism of the Northern Great Caucasus: Isotope and Age Studies on Rift-Related Alkali Rhyolites,” N. Jahrb. Mineral. Abh. 156, 63–80 (1986).

    Google Scholar 

  23. J. C. Hess, H. J. Lippolt, A. G. Gurbanov, et al., “The Cooling History of the Late Pliocene Eldzhurtinsky Granite (Caucasus, Russia) and the Termochronological Potential of Grain-Size/Age Relationship,” Earth Planet. Sci. Lett. 117, 393–406 (1993).

    Article  Google Scholar 

  24. D. S. Belyankin, “On the Study of the Youngest Igneous Rocks of Kazbek and the Adjacent Areas,” Izv. S-Pb Politekhn. Inst., Otd. Techn., Estestvozn. Matem. 21, 73–105 (1914).

    Google Scholar 

  25. B. G. Tutberidze, Geology and Petrology of the Alpine Late Orogenic Magmatism of the Central Part of the Caucasus Segment (Tbilisskii Univ., Tbilisi, 2004) [in Russian].

    Google Scholar 

  26. N. L. Enna, Geological Map of the USSR. Quadrangle K-38-41-G. Scale 1: 50000 (PGO Sevkavgeologiya, 1988) [in Russian].

  27. I. V. Chernyshev, V. A. Lebedev, and M. M. Arakelyants, “K-Ar Dating of Quaternary Volcanics: Methodology and Interpretation of Results,” Petrologiya 14, 69–89 (2006) [Petrology 14, 62–80 (2006)].

    Google Scholar 

  28. P. D. Maniar and P. M. Piccoli, “Tectonic Discrimination of Granitoids,” Geol. Soc. Am. Bull. 101, 635–643 (1989).

    Article  Google Scholar 

  29. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks,” J. Petrol. 25, 956–983 (1984).

    Google Scholar 

  30. J. B. Whalen, K. L. Currie, and B. W. Chappell, “A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis,” Contrib. Mineral. Petrol. 95, 407–419 (1987).

    Article  Google Scholar 

  31. B. R. Frost, C. G. Barnes, W. J. Collins, et al., “A Geochemical Classification for Granitic Rocks,” J. Petrol. 42, 2033–2048 (2001).

    Article  Google Scholar 

  32. L. V. Tauson, Geochemical Types and Ore Potential of Granitoids (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  33. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985; Mir, Moscow, 1988).

    Google Scholar 

  34. A. E. Vernikovskaya, V. A. Vernikovskii, E. B. Sal’nikova, et al., “Neoproterozoic A-Type Granites of the Garevka Massif, Yenisey Ridge: Age, Sources, and Geodynamic Setting,” Petrologiya 14, 56–68 (2006) [Petrology 14, 50–61 (2006)].

    Google Scholar 

  35. G. N. Eby, “Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications,” Geology 20, 641–644 (1992).

    Article  Google Scholar 

  36. M. M. Bogina, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (IGEM RAN, Moscow, 1994).

    Google Scholar 

  37. A. Zindler and S. Hart, “Chemical Geodynamics,” Annu. Rev. Earth Planet. Sci., No. 14, 493–571 (1986).

  38. S. B. Jacobsen and G. J. Wasserburg, “Sm-Nd Isotopic Evolution of Chondrites and Achondrites,” Earth Planet. Sci. Lett. 67, 137–150 (1984).

    Article  Google Scholar 

  39. V. A. Lebedev, S. N. Bubnov, I. V. Chernyshev, et al., “Geochronology and Genesis of Subalkaline Basaltic Lava Rivers at the Dzhavakheti Highland, Lesser Caucasus: K-Ar and Sr-Nd Isotopic Data,” Geokhimiya, No. 3, 243–258 (2007) [Geochem. Int. 45, 211–225 (2007)].

  40. V. V. Yarmolyuk, V. G. Ivanov, V. I. Kovalenko, et al., “Magmatism and Geodynamics of the Southern Baikal Volcanic Region (Mantle Hot Spot): Results of Geochronological, Geochemical, and Isotopic (Sr, Nd, and O) Investigations,” Petrologiya 11, 3–34 (2003) [Petrology 11, 1–30 (2003)].

    Google Scholar 

  41. A. W. Hofmann, “Mantle Geochemistry: the Message from Oceanic Volcanism,” Nature 385, 219–229 (1997).

    Article  Google Scholar 

  42. Yu. A. Kostitsyn, “Rb-Sr and Sm-Nd System of Granitoids,” in Proceedings of 15th Vinogradov Symposium on Isotope Geochemistry, Moscow, Russia, 1998 (GEOKhI RAN, Moscow, 1998), pp. 129–130 [in Russian].

    Google Scholar 

  43. S. N. Bubnov, V. A. Lebedev, I. V. Chernyshev, et al., “Place and Role of Basic Magmatism in the Neogene-Quaternary Geologic History of the Greater and Lesser Caucasus,” in Proceedings of 3rd Russian Conference on Isotopic Geochronology. Isotopic Dating of Ore Formation, Magmatism, and Metamorphism, Moscow, Russia, 2006 (GEOS, Moscow, 2006), Vol. 1, pp. 128–132 [in Russian].

    Google Scholar 

  44. F. Barker, D. R. Wones, W. N. Sharp, et al., “The Pikes Peak Batholith, Colorado Front Range, and a Model for the Origin of the Gabbro-Anorthosite-Syenite-Potassic Granite Suite,” Precambrian Res. 2, 97–160 (1975).

    Article  Google Scholar 

  45. N. B. W. Harris and G. F. Marriner, “Geochemistry and Petrogenesis of a Peralkaline Granite Complex from the Midian Mountains, Saudi Arabia,” Lithos 13, 325–337 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Lebedev.

Additional information

Original Russian Text © V.A. Lebedev, S.N. Bubnov, I.V. Chernyshev, A.V. Chugaev, Yu.V. Golítsman, G.T. Vashakidze, E.D. Bairova, 2009, published in Geokhimiya, 2009, No. 6, pp. 582–602.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, V.A., Bubnov, S.N., Chernyshev, I.V. et al. Geochronology and genesis of the young (Pliocene) granitoids of the Greater Caucasus: Dzhimara multiphase Massif of the Kazbek neovolcanic area. Geochem. Int. 47, 550–567 (2009). https://doi.org/10.1134/S0016702909060020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909060020

Keywords

Navigation