Skip to main content
Log in

Cancrinite and cancrisilite in the Khibina-Lovozero alkaline complex: Thermochemical and thermal data

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents the results of a thermochemical and thermal study of cancrinite, (Na6.93Ca0.545K0.01)Σ7.485[(Si6.47Al5.48Fe0.05)Σ12O24](CO3)1.25 · 2.30 H2O, and cancrisilite, (Na7.17 Ca0.01)Σ7.18[(Si7.26Al4.70Fe0.04)Σ12O24][(CO3)1.05(OH)0.21(PO4)0.04(SO4)0.01] · 2.635 H2O, from the Khibina-Lovozero Complex, Kola Peninsula, Russia. Stages of the thermal decomposition of these minerals were studied using IR spectroscopy. The enthalpies of formation of the minerals from elements were determined by melt drop solution calorimetry: Δ f H 0el (298.15 K) = −14 490 ± 16 kJ/mol for cancrinite and −14302 ± 17 kJ/mol for cancrisilite. The values of Δ f H 0el (298.15 K), S o(298.15 K), and Δ f H 0el (298.15 K) are determined for cancrinite and cancrisilite of theoretical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Bonaccorsi and S. Merlino, “Modular Microporous Minerals: Cancrinite-Davyne and CHS Phases,” Rev. Mineral. Geochem. 57, 448–449 (2005).

    Article  Google Scholar 

  2. A. P. Khomyakov, E. I. Semenov, E. A. Pobedimskaya, et al., “Cancrisilite Na7[Si7Al5O24](CO3) · 3H2O—A New Mineral of the Cancrinite Family,” Zap. Vseross. Mineral. O-va, No. 6, 80–84 (1991).

  3. E. Slaby, “Indicative Significance of Water Environment in Zeolitic Structure—Study Using Experimentally Grown Cancrinite and Analcime,” Acta Geologica Polonica, 49(1), 25–65 (1999).

    Google Scholar 

  4. Th. M. Gesing and J.-Ch. Buhl, “Structure and Spectroscopic Properties of Hydrodecarbonate Containing Alumosilicate Sodalite and Cancrinite,” Zeit. Krist, No. 7, 413–418 (2000).

  5. N. B. Reshetnyak, T. A. Sosedko, and L. I. Tret’yakova, “Combination Light Scattering in Minerals,” Mineral. Zh. 10(1), 69–73 (1988).

    Google Scholar 

  6. T. A. Sosedko, B. K. Kasatov, L. N. Furmakova, and E. A. Lipatova, “New Data on Cancrinite-Vishnevite Group Minerals,” Zap. Vseross. Mineral. O-va (1989).

  7. I. Hassan, “The Thermal Behavior of Cancrinite,” Can. Mineral. 34, 893–900 (1996).

    Google Scholar 

  8. I. Hassan, S. M. Antao, and J. B. Parise, “Cancrinite: Crystal Structure, Phase Transitions, and Dehydration Behavior with Temperature,” Am. Mineral., No. 7, 1117–1124 (2006).

  9. M. Sirbescu and D. M. Jenkins, “Experiments on the Stability of Cancrinite in the System Na2O-CaO-Al2O3-SiO2-CO2-H2O” Am. Mineral. 84, 1850–1860 (1999).

    Google Scholar 

  10. I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemcial Study of the CaO-MgO-SiO2 System,” Geokhimiya, No. 12, 1811–1825 (1979).

  11. R. A. Robie and B. S. Hemingway, “Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures,” U.S. Geol. Surv. Bull., No. 2131, (1995).

  12. G. V. Yukhnevich, Infrared Spectroscopy of Water (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  13. I. A. Kiseleva, A. Navrotsky, I. A. Belitsky, and B. A. Fursenko, “Thermochemical Study of Calcium Zeolites—Heulandite and Stilbite,” Am. Mineral. 86, 448–455 (2001).

    Google Scholar 

  14. S. V. Ushakov, K. B. Helean, A. Navrotsky, and L. A. Boatner, “Thermochemistry of Rare-Earth Orthophosphates,” J. Mater. Res. 16, 2623–2633.

  15. I. A. Kiseleva, A. R. Kotelnikov, K. V. Martynov, et al., “Thermodynamic Properties of Strontianite-Witherite Solid Solution (Sr, Ba)CO3,” Phys. Chem. Minerals 21, 392–400 (1994).

    Article  Google Scholar 

  16. I. A. Kiseleva, “Thermodynamic Properties and Stability of Pyrope,” Geokhimiya, No. 6, 845–854 (1976).

  17. L. P. Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical Study of Natural Pollucite,” Thermochim. Acta 403, 251–256 (2003).

    Article  Google Scholar 

  18. A. R. Kotel’nikov, Yu. K. Kabalov, T. N. Zezyulya, et al., “Experimental Study of Celestite-Barite Solid Solution,” Geokhimiya, No. 12, 1286–1293 (2000) [Geochem. Int. 38, 1181–1187 (2000)].

  19. I. A. Kiseleva and L. P. Ogorodova, “On Use of High-Temperature Calorimetry for Determination of Formation Enthalpy of Hydroxyl-Bearing Minerals by the Example of Talc and Tremolite,” Geokhimiya, No. 12, 1745–1755 (1983).

  20. G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovskii, Reference Book of Thermodynamic Values for Geologists (Atomzidat, Moscow, 1971) [in Russian].

    Google Scholar 

  21. G. K. Johnson, I. R. Tasker, H. E. Flotow, et al., “Thermodynamic Studies of Mordenite, Dehydrated Mordenite, and Gibbsite,” Am. Mineral. 77, 85–93 (1992).

    Google Scholar 

  22. H. H. Moenke, Mineralspektren (Akad. Verlag, Berlin, 1962), Band 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Ogorodova.

Additional information

Original Russian Text © L.P. Ogorodova, L.V. Mel’chakova, M.F. Vigasina, L.V. Olysich, I.V. Pekov, 2009, published in Geokhimiya, 2009, No. 3, pp. 275–282.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogorodova, L.P., Mel’chakova, L.V., Vigasina, M.F. et al. Cancrinite and cancrisilite in the Khibina-Lovozero alkaline complex: Thermochemical and thermal data. Geochem. Int. 47, 260–267 (2009). https://doi.org/10.1134/S0016702909030045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909030045

Keywords

Navigation