Skip to main content
Log in

Effect of the disproportionation reaction of ferrous iron in impact-evaporation processes

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Evidence for the disproportionation of iron was found in model experiments imitating impact melting, evaporation, and condensation. The experiments were carried out using a laser system at a characteristic temperature of ∼3000–4000 K and a pulse duration of ∼10−3 s in a He atmosphere (P = 1 atm). Augite and mixtures of peridotite with MnO2 and WO3 were used as starting target materials. Experimental products (condensed vapor phase) were analyzed by X-ray photoelectron spectroscopy. The results of condensate analysis provided compelling evidence for the presence of iron in three oxidation states (Fe0, Fe2+, and Fe3+). In an experiment with augite, the proportions of iron species of different valences were similar to the stoichiometry of the disproportionation reaction. Similar evidence for this reaction was first found in a condensate from the samples of the fine fraction of the Luna 16 regolith. In the layers of the lunar condensate, the proportions of the valence states of iron were on average Fe0:Fe2+:Fe3+ = 1.2: 1.9: 0.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Ringwood, Origin of the Earth and Moon (Springer, New York, 1979; Nedra, Moscow, 1982).

    Google Scholar 

  2. O. L. Kuskov and N. I. Khitarov, Thermodynamics and Geochemistry of the Earth’s Core and Mantle (Nedra, Moscow, 1982) [in Russian].

    Google Scholar 

  3. E. M. Galimov, “Growth of the Earth’s Core as a Source of Its Internal Energy and a Factor of Mantle Redox Evolution,” Geokhimiya, No. 8, 755–758 (1998) [Geochem. Int. 36, 673–675 (1998)].

  4. A. A. Kadik, “Oxygen Fugacity Regime in the Upper Mantle as a Reflection of the Chemical Differentiation of Planetary Materials,” Geokhimiya, No. 1, 63–79 (2006) [Geochem. Int. 44, 56–71 (2006)].

  5. P. Shen, W. A. Bassett, and L.-G. Liu, “Experimental Determination of the Effects of Pressure and Temperature on the Stoichiometry and Phase Relations of Wustite,” Geochim. Cosmochim. Acta 47, 773–778 (1983).

    Article  Google Scholar 

  6. D. J. Frost, C. Liebske, F. Langenhorst, et al., “Experimental Evidence for the Existence of Iron-Rich Metal in the Earth’s Lower Mantle,” Nature 428, 409–412 (2004).

    Article  Google Scholar 

  7. H. K. Mao and P. M. Bell, “Disproportionation Equilibrium in Iron-Bearing Systems at Pressures above 100 kbar with Applications to Chemistry of the Earth’s Mantle,” In: Energetics of Geological Processes, Ed. by S. K. Saxena and S. Bhattacharji (Springer, New York, 1977), pp. 237–249.

    Google Scholar 

  8. B. Hapke, “Space Weathering from Mercury to the Asteroid Belt,” J. Geophys. Res. 106, 10039–10073 (2001).

    Article  Google Scholar 

  9. S. Mehta and J. I. Goldstein, “Metallic Particles in the Glassy Constituents of Three Lunar Highland Samples 65315, 67435 and 78235,” Proc. 11th Lunar Planet. Sci. Conf., 1713–1725 (1980).

  10. J. Wasson and G. W. Kallemeyn, “Allan Hill 85085: A Subchondritic Meteorite of Mixed Nebular and Regolithic Heritage,” Earth Planet. Sci. Lett. 101, 148–161 (1990).

    Article  Google Scholar 

  11. E. A. King, “Refractory Residues, Condensates and Chondrules from Solar Furnace Experiments,” Proc. 13th Lunar Planet. Sci. Conf., Pt. 1, J. Geophys. Res. 87(Suppl.), A429–A434 (1982)

    Google Scholar 

  12. E. A. King, “Vapor Fractionation Trends of Major Elements for Meteorite and Rock Samples under Vacuum,” Meteoritics 18, 324 (1983).

    Google Scholar 

  13. E. A. King, “Reduction, Partial Evaporation, and Spattering: Possible Chemical and Physical Processes in Fluid Drop Chondrule Formation,” in Chondrules and Their Origin, Ed. by E. A. King, (LPI, Houston, 1983), pp. 180–187.

    Google Scholar 

  14. A. Hashimoto, M. Kumazawa, and N. Onuma, “Evaporation Metamorphism of Primitive Dust Material in the Early Solar Nebula,” Earth Planet. Sci. Lett. 43, 13–21 (1979).

    Article  Google Scholar 

  15. A. Hashimoto, “Evaporation Metamorphism in the Early Solar Nebula—Evaporation Experiments on the Melt FeO-MgO-SiO2-CaO-Al2O3 and Chemical Fractionation of Primitive Materials,” Geochem. J. 17, 111–145 (1983).

    Google Scholar 

  16. V. I. Fel’dman, E. A. Kozlov, Yu. N. Zhugin, et al., “Cooling Peculiarities of the Almandine-Composition Impact Melt,” Dokl. Akad. Nauk 365, 253–256 (1999) [Dokl. Earth Sci. 365, 284–287 (1999)].

    Google Scholar 

  17. O. I. Yakovlev, Yu. P. Dikov, and M. V. Gerasimov, “Problems of Oxidation and Reduction in the Impact Process,” Geokhimiya, No. 12, 1359–1370 (1992).

  18. O. I. Yakovlev, Yu. P. Dikov, M. V. Gerasimov, et al., “Experimental Investigation of Factors Controlling the Composition of Glasses from the Lunar Regolith,” Geokhimiya, No. 5, 467–481 (2003) [Geochem. Int. 41, 417–430 (2003)].

  19. O. I. Yakovlev, Yu. P. Dikov, and M. V. Gerasimov, “Experimental Data on the Thermal Reduction of Phosphorus and Iron and Their Significance for the Interpretation of the Impact Reworking of Lunar Materials,” Geokhimiya, No. 9, 915–923 (2006) [Geochem. Int. 44, 847–854 (2006)].

  20. L. S. Darken and R. W. Gurry, “The System Iron-Oxygen, I,” Am. Chem. Soc. 67, 1398–1412 (1945).

    Article  Google Scholar 

  21. A. Hoffmann, “Der Zerfallsmechanismus des Wüstits Fe1−x O unterhalb 570°C,” Z. Elektrochemie 63, 107–213 (1959).

    Google Scholar 

  22. M. V. Gerasimov, B. A. Ivanov, O. I. Yakovlev, and Yu. P. Dikov, “Physics and Chemistry of Impacts,” in Laboratory Astrophysics and Space Research, Ed. by P. Ehrenfreund et al., KAP 236, 279–329 (1999).

  23. M. V. Gerasimov, L. M. Mukhin, Yu. P. Dikov, and V. I. Rekharskii, “Mechanism of the Early Differentiation of the Earth,” Vestn. Akad. Nauk SSSR, No. 9, 10–15 (1985).

  24. E. K. Kazenas and D. M. Chizhikov, Pressure and Composition of Vapor over Oxides of Chemical Elements (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  25. E. K. Kazenas, Thermodynamics of the Vaporization of Double Oxides (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  26. G. Brewer and G. M. Rosenblatt, “Dissociation Energies and Free Energy Function of Gaseous Monoxides,” Advanc. High Temp. Chem., No. 2, 46 (1969).

  27. G. De Maria, G. Balducci, M. Guido, and V. Piacent, “Mass Spectrometric Investigation of the Vaporization Process of Apollo 12 Lunar Samples,” Proc. 2nd Lunar. Planet. Sci. Conf. 2, 1367–1380 (1971).

    Google Scholar 

  28. O. I. Yakovlev, O. M. Markova, G. A. Semenov, and A. N. Belov, “Experimental Results on the Evaporation of the Krymka Chondrite,” Meteoritika, 43, 125–133 (1984).

    Google Scholar 

  29. O. M. Markova, O. I. Yakovlev, G. A. Semenov, and A. N. Belov, “Some General Results on the Experimental Evaporation of Natural Melts in a Knudsen Cell,” Geokhimiya, No. 11, 1559–1569 (1986).

  30. S. A. Vishnevsky and J. Raitala, “Native Iron, Wustite, and Magnetite in Impactites of Janisjarvi and Gardnos Craters, the Baltic Shield,” Meteoritics Planet. Sci. 38(Suppl.), A43 (2003).

    Google Scholar 

  31. T. G. Sharp, M. Chen, and A. El Goresy, “Microstructures of High-Pressure Minerals in the Sixiangkou L6 Chondrite: Constrains on the Duration of Shock Events in Chondrite,” Proc. 27th Lunar Planet. Sci. Conf., 1175 (1996).

  32. M. Chen, X. Xie, D. Wang, and S. Wang, “Metal-Troilite-Magnetite Assemblage in Shock Veins of Sixiangkou Meteorite,” Geochim. Cosmochim. Acta 66, 3143–3149 (2002).

    Article  Google Scholar 

  33. Yu. P. Dikov, A. V. Ivanov, F. Wlotzka, et al., “High Enrichment of Carbon and Volatile Elements in the Surface Layers of Luna 16 Soil Sample 1635: Result of Comet Or Meteorite Impact?,” Earth Planet. Sci. Lett. 155, 197–204 (1998).

    Article  Google Scholar 

  34. M. V. Gerasimov, Yu. P. Dikov, O. L. Yakovlev, and F. Wlotzka, “Entrapment of Water Vapor from the Atmosphere by Condensed Silicate Material during Pulse Evaporation,” Geokhimiya, No. 4, 597–608 (1994).

  35. M. V. Gerasimov, Yu. P. Dikov, O. I. Yakovlev, and F. Wlotzka, “Experimental Investigation of the Role of Water in Impact Vaporization Chemistry,” Deep-Sea Res. II 49, 995–1009 (2002).

    Article  Google Scholar 

  36. J. F. Kasting, D. H. Eggler, and S. Raeburn, “Mantle Redox Evolution and the Oxidation State of the Archean Atmosphere,” J. Geol. 101, 245–257 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Yakovlev.

Additional information

Original Russian Text © O.I. Yakovlev, Yu.P. Dikov, M.V. Gerasimov, 2009, published in Geokhimiya, 2009, No. 2, pp. 141–149.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakovlev, O.I., Dikov, Y.P. & Gerasimov, M.V. Effect of the disproportionation reaction of ferrous iron in impact-evaporation processes. Geochem. Int. 47, 134–142 (2009). https://doi.org/10.1134/S0016702909020025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702909020025

Keywords

Navigation