Skip to main content

Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies


This paper considers the distribution of trace elements (including rare earth elements) in zircons dated by the ion-microprobe U-Th-Pb isotope method and its genetic implications. Two problems were addressed on the basis of the investigation of trace element compositions of zircons: (1) genesis of zircons from subalkaline magmatic rocks, sysenites, and sanukitoids and their comparison with tonalites as exemplified by the rocks of the Karelian region, and (2) determination of trace element signatures of zircons from the oldest granulite-facies rocks of the Ukrainian shield. It was shown that the REE distribution patterns of the tonalites, which crystallized in equilibrium with melt, are strictly governed by crystal-chemical laws. The REE distribution patterns show a positive slope with an increase from La to Lu, a positive Ce anomaly, and a negative Eu anomaly. Similar patterns were observed in zircons from the syenites. The trace element contents of zircons are related to those of melts through partition coefficients. Zircons from the sanukitoids show a considerable LREE enrichment, which is inconsistent with the calculated zircon/melt partition coefficients and presumably related to the inherently imperfect zircon structure. Such a structure was formed during zircon crystallization from melt at high temperatures and the anomalous fluid regime that is characteristic, in particular, of sanukitoid melts. The REE distribution patterns of zircons that crystallized under granulite-facies conditions are sharply different from typical distributions in HREE depletion, which was caused by the competitive growth of garnet during zircon crystallization.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. A. Speer, “Zircon,” in Orthosilicates, Ed. by P. H. Ribbe, Rev. Mineral. 5, 67–112 (1980).

  2. 2.

    S. S. Ramakrishnan, K. V. G. K. Gokhale, and E. C. Subbarao, “Solid Solubility in the System Zircon-Hafnon,” Mater. Res. Bull. 4, 323–327 (1969).

    Article  Google Scholar 

  3. 3.

    E. B. Watson, D. J. Cherniak, J. M. Hanchar, et al., “The Incorporation of Pb into Zircon,” Chem. Geol. 141, 19–31 (1997).

    Article  Google Scholar 

  4. 4.

    P. W. O. Hoskin and U. Schaltegger, “The Composition of Zircon and Igneous and Metamorphic Petrogenesis,” in Zircons, Ed. by J. M. Hanchar and P. W. O. Hoskin, Rev. Mineral. Geochem. 53, 27–62 (2003).

  5. 5.

    J. M. Hanchar, R. J. Finch, P. W. O. Hoskin, et al., “Rare-Earth Elements in Synthetic Zircon. Part 1,” Am. Mineral. 86, 667–680 (2001).

    Google Scholar 

  6. 6.

    R. J. Finch, J. M. Hanchar, P. W. O. Hoskin, and P. C. Burns, “Rare-Earth Elements in Synthetic Zircon: Part 2. A Single-Crystal X-Ray Study of Xenotime Substitution,” Am. Mineral. 86, 681–689 (2001).

    Google Scholar 

  7. 7.

    N. Rayner, R. A. Stern, and S. D. Carr, “Grain-Scale Variations in Trace Element Composition of Fluid-Altered Zircon, Acasta Gneiss Complex, Northwestern Canada,” Contrib. Mineral. Petrol. 148, 721–734 (2005).

    Article  Google Scholar 

  8. 8.

    R. W. Hinton and B. G. J. Upton, “The Chemistry of Zircon: Variations within and between Large Crystals from Syenite and Alkali Basalt Xenoliths,” Geochim. Cosmochim. Acta 55, 3287–3302 (1991).

    Article  Google Scholar 

  9. 9.

    G. A. Snyder, L. A. Taylor, and G. Crozaz, “Zircon/Melt Partition Coefficients for the Rare-Earth Elements in Evolved Rocks: The Usefulness of Accessory Minerals in Petrogenetic Studies on the Earth and Moon,” Lunar Planet. Sci. Conf. 23, 1323–1324 (1992).

    Google Scholar 

  10. 10.

    T. R. Ireland and F. Wlotzka, “The Oldest Zircons in the Solar System,” Earth Planet. Sci. Lett. 109, 1–10 (1992).

    Article  Google Scholar 

  11. 11.

    D. Rubatto, “Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism,” Chem. Geol. 184, 123–138 (2002).

    Article  Google Scholar 

  12. 12.

    N. M. Halden, F. C. Hawthorne, J. L. Campbell, et al., “Chemical Characterization of Oscillatory Zoning and Overgrowths in Zircon Using 3 MeV μ-PIXE,” Can. Mineral. 31, 637–647 (1993).

    Google Scholar 

  13. 13.

    E. M. Es’kova, “Geochemistry of Nb and Ta in the Vishnevye Gory Nepheline Syenite Massifs,” Geokhimiya, No. 2, 130–139 (1959).

  14. 14.

    U. Poller, J. Huth, P. Hoppe, and I. S. Williams, “REE, U, Th, and Hf Distribution in Zircon from Western Carpathian Variscian Granitoids: A Combined Cathodoluminescence and Ion Microprobe Study,” Am. J. Sci. 301, 585–876 (2001).

    Article  Google Scholar 

  15. 15.

    R. T. Pidgeon, “Zircons: What We Need to Know,” J. R. Soc. West. Austr. 79, 119–122 (1996).

    Google Scholar 

  16. 16.

    P. W. O. Hoskin and T. R. Ireland, “Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator,” Geology 28, 627–630 (2000).

    Article  Google Scholar 

  17. 17.

    M. J. Whitehouse and J. P. Platt, “Dating High-Grade Metamorphism—Constraints from Rare-Earth Elements in Zircon and Garnet,” Contrib. Mineral. Petrol. 145, 61–74 (2003).

    Google Scholar 

  18. 18.

    J. Hermann, D. Rubatto, A. Korsakov, and V. S. Shatsky, “Multiple Zircon Growth during Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan),” Contrib. Mineral. Petrol. 141, 66–82 (2001).

    Google Scholar 

  19. 19.

    M. J. Whitehouse and B. S. Kamber, “On the Overabundance of Light Rare Earth Elements in Terrestrial Zircons and Its Implication for Earth’s Earliest Magmatic Differentiation,” Earth Planet. Sci. Lett. 204, 333–346 (2002).

    Article  Google Scholar 

  20. 20.

    P. W. O. Hoskin, “Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia,” Geochim. Cosmochim. Acta 69, 637–648 (2005).

    Article  Google Scholar 

  21. 21.

    E. A. Belousova, W. L. Griffin, S. Y. O’Reilly, and N. I. Fisher, “Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type,” Contrib. Mineral. Petrol. 143, 602–622 (2002).

    Google Scholar 

  22. 22.

    E. A. Belousova, W. L. Griffin, and N. J. Pearson, “Trace Element Composition and Cathodoluminescence Properties of Southern African Kimberlitic Zircons,” Mineral. Mag. 62, 355–366 (1998).

    Article  Google Scholar 

  23. 23.

    P. W. O. Hoskin, “Minor and trace element analysis of natural zircon (ZrSiO4) by SIMS and Laser Ablation ICPMS: A Consideration and Comparison of Two Broadly Competitive Techniques,” J. Trace Microprobe Tech. 16, 301–326 (1998).

    Google Scholar 

  24. 24.

    J. B. Thomas, R. J. Bodnar, N. Shimizu, and A. K. Sinha, “Determination of Zircon/Melt Trace Element Partition Coefficients from SIMS Analysis of Melt Inclusions in Zircon,” Geochim. Cosmochim. Acta 66, 2887–2901 (2002).

    Article  Google Scholar 

  25. 25.

    E. B. Watson and T. M. Harrison, “Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth,” Science 308, 841–844 (2005).

    Article  Google Scholar 

  26. 26.

    E. B. Watson, D. A. Wark, and J. B. Thomas, “Crystallization Thermometers for Zircon and Rutile,” Contrib. Mineral. Petrol. 151, 413–433 (2006).

    Article  Google Scholar 

  27. 27.

    V. K. Smirnov, A. V. Sobolev, V. G. Batanova, et al., “Quantitative SIMS Analysis of Melt Inclusions and Host Minerals for Trace Elements and H2O,” EOS Trans. Spring Meet. Suppl. AGU 17, 270 (1995).

    Google Scholar 

  28. 28.

    A. A. Nosova, L. V. Sazonova, V. V. Narkisova, and S. G. Simakin, Minor Elements in Clinopyroxene from Paleozoic Volcanics of the Tagil Island Arc in the Central Urals,” Geokhimiya, No. 3, 254–268 (2002) [Geochem. Int. 40, 219–232 (2002)].

  29. 29.

    K. P. Jochum, D. B. Dingwell, A. Rocholl, et al., “The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for in-situ Microanalysis,” Geost. Newslett. 24, 87–133 (2000).

    Article  Google Scholar 

  30. 30.

    P. Bottazzi, L. Ottolini, R. Vannucci, and A. Zanetti, “An Accurate Procedure for the Quantification of Rare Earth Elements in Silicates,” in SIMS IX Proceedings, Ed. by A. Benninghoven, Y. Nihei, R. Shimizu, and H. W. Werner (Wileys, Chichester, 1994), pp. 927–930.

    Google Scholar 

  31. 31.

    M. Wiedenbeck, P. Alle, F. Corfu, et al., “Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses,” Geostand. Newslett. 19, 1–23 (1995).

    Article  Google Scholar 

  32. 32.

    M. J. Whitehouse, “Multi-Collector SIMS Determination of Trace Lanthanides in Zircon,” Geostand. Geoanal. Res. 28, 195–201 (2004).

    Article  Google Scholar 

  33. 33.

    Y. Sano, K. Terada, and T. Fukuoka, “High Mass Resolution Ion Microprobe Analysis of Rare Earth Elements in Silicate Glass, Apatite and Zircon: Lack of Matrix Dependency,” Chem. Geol. 184, 217–230 (2001).

    Article  Google Scholar 

  34. 34.

    R. W. Nesbitt, T. Hirata, I. B. Butler, et al., “UV Laser Ablation ICP-MS: Some Applications in the Earth Sciences,” Geostand. News: J. Geostand. Geoanal. 20, 231–243 (1997).

    Article  Google Scholar 

  35. 35.

    E. Anders and N. Grevesse, “Abundances of Elements: Meteoritic and Solar,” Geochim. Cosmochim. Acta 53, 197–214 (1989).

    Article  Google Scholar 

  36. 36.

    E. V. Bibikova, M. N. Bogdanova, and T. Skiold, “New U-Pb Isotope Data on the Archean of the Northwestern Belomorian Region,” Dokl. Akad. Nauk 344, 794–797 (1995).

    Google Scholar 

  37. 37.

    E. Bibikova, T. Skiold, and S. Bogdanova, “Age and Geodynamic Aspects of the Oldest Rocks in the Precambrian Belomorian Belt of the Baltic Shield,” in Precambrian Crustal Evolution in the North Atlantic Region, Ed. by T. Brewer, Geol. Soc. London, Spec. Publ. 112, 55–67 (1996).

  38. 38.

    E. V. Bibikova, A. Petrova, and S. Claesson, “NORDSIM U-Th-Pb Isotopic Study of Zircons from Sanukitoids of the Karelian Craton, Baltic Shield,” Lithos. 79, 129–145 (2005).

    Article  Google Scholar 

  39. 39.

    S. B. Shirey and G. N. Hanson, “Mantle-Derived Archaean Monzodiorites and Trachyandesites,” Nature 310, 222–224 (1984).

    Article  Google Scholar 

  40. 40.

    R. A. Stern, G. N. Hanson, and S. B. Shirey, “Petrogenesis of Mantle-Derived, LILE-Enriched Archean Monzodiorites and Trachyandesites (Sanukitoids) in Southwestern Superior Province,” Can. J. Earth Sci. 26, 1688–1712 (1989).

    Google Scholar 

  41. 41.

    S. B. Lobach-Zhuchenko, H. R. Rollinson, V. P. Chekulaev, et al., “The Archaean Sanukitoid Series of the Baltic Shield: Geological Setting, Geochemical Characteristics and Implications for their Origin,” Lithos 79, 107–128 (2005).

    Article  Google Scholar 

  42. 42.

    E. V. Bibikova, N. A. Arestova, V. V. Ivanikov, et al., “Isotopic Geochronology of the Archean Posttectonic Association of Sanukitoids, Syenites, and Granitoids in Central Karelia,” Petrologiya 14, 44–55 (2006) [Petrology 14, 39–49 (2006)].

    Google Scholar 

  43. 43.

    E. V. Bibikova, “Oldest Earth’s Rocks: Isotope Geochronology and Geochemistry,” Mineral. Zh. 26(3), 13–21 (2004).

    Google Scholar 

  44. 44.

    S. Claesson, E. Bibikova, S. Bogdanova, and V. Skobelev, “Archaean Terranes, Palaeoproterozoic Reworking and Accretion in the Ukrainian Shield, East-European Craton,” in European Lithosphere Dynamics, Ed. by D. G. Gee and R. A. Stephenson, Geol. Soc. London Mem. 32, 645–654 (2006).

  45. 45.

    M. J. Whitehouse, “Rare Earth Elements in Zircon: A Review of Applications and Case Studies from the Outer Hebridean Lewisian Complex, NW Scotland,” Geol. Soc. London, Spec. Publ. 220, 49–64 (2003).

    Article  Google Scholar 

  46. 46.

    N. M. Kelly and S. L. Harley, “An Integrated Microtextural and Chemical Approach to Zircon Geochronology: Refining the Archean History of the Napier Complex, East Antarctica,” Contrib. Mineral. Petrol. 149, 57–84 (2005).

    Article  Google Scholar 

  47. 47.

    H. Martin, R. H. Smithies, R. Rapp, et al., “An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution,” Lithos 79, 107–128 (2005).

    Article  Google Scholar 

  48. 48.

    I. M. Lesnova, Geochronology of the Charnockitoids of Pobuzh’e (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  49. 49.

    E. Bibikova, A. Slabunov, O. Volodichev, and M. Whitehouse, “The Archaen Eclogites of the Belomorian Province, the Fennoscandian Shield: Geochronology and Petrology,” in Abstracts of EUG (2005).

  50. 50.

    N. Rayner, R. A. Stern, and S. D. Carr, “Grain-Scale Variations in Trace Element Composition of Fluid-Altered Zircon, Acasta Gneiss Complex, Northwestern Canada,” Contrib. Mineral. Petrol. 148, 721–734 (2005).

    Article  Google Scholar 

  51. 51.

    S. Utsunomiya, J. W. Valley, A. J. Cavosie, et al., “Radiation Damage and Alteration of Zircon from a 3.3 Ga Porphyritic Granite from the Jack Hills, Western Australia,” Chem. Geol. 236, 92–111 (2007).

    Article  Google Scholar 

  52. 52.

    S. M. Reddy, N. E. Timms, P. Trimby, et al., “Crystal-Plastic Deformation of Zircon: A Defect in Assumption of Chemical Robustness,” Geology 34, 257–260 (2006).

    Article  Google Scholar 

  53. 53.

    E. M. King, J. W. Valley, D. W. Davis, and G. R. Edwards, “Oxygen Isotope Ratios of Archean Plutonic Zircons from Granite-Greenstone Belts of the Superior Province: Indicator of Magmatic Source,” Precambrian Res. 92, 365–387 (1998).

    Article  Google Scholar 

  54. 54.

    V. S. Urusov, V. L. Tauson, and V. V. Akimov, Solid State Geochemistry (GEOS, Moscow, 1997) [in Russian].

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. V. Bibikova.

Additional information

Original Russian Text © A.A. Fedotova, E.V. Bibikova, S.G. Simakin, 2008, published in Geokhimiya, 2008, No. 9, pp. 980–997.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fedotova, A.A., Bibikova, E.V. & Simakin, S.G. Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. Geochem. Int. 46, 912–927 (2008).

Download citation


  • Zircon
  • Geochemistry International
  • Trace Element Composition
  • Baltic Shield
  • Quartz Diorite