Geochemistry International

, 46:800 | Cite as

Heterovalent isomorphism in the magnesium-iron borates

  • S. M. Aleksandrov
  • M. A. Troneva


Orthorhombic magnesium-iron ludwigite-vonsenite forms a continuous isomorphic series Mg2Fe3+[BO3]O2-Fe 2 2+ Fe[BO3]O2; its composition at the magnesioskarn and other deposits varies from magnesian to ferriferous members. In addition, they demonstrate isovalent substitution of Mn for Mg (in pinakiolite, blatterite, and others) and practically complete substitution of Ni for Mg (in bonaccordite). Ferric iron in the borates is substituted by isovalent Al and Cr. The incorporation of Ti, Sn, Sb, and V via heterovalent substitution has been studied in less detail. Our research revealed new manifestations of Ti-and Sn-bearing borates. They are magnesioludwigite and azoproite with variable Ti content, as well as by Sn-bearing aluminian borates formed via the 2Fe3+ → (Ti4+ + Mg)6+ and/or (Sn4+ + Mg)6+ substitution. The incorporation of pentavalent elements according to the scheme 3Fe3+ → (Sb5+ + 2Mg)9+ or (V5+ + 2Mg)9+ is not excluded. The highest Ti borates were found in the marbles and calciphyres of the Tazheran deposit in the Baikal region and Nalednoe, Dokuchan, and Titovskoe deposits in Yakutia, where azoproites contain more than 50 and even higher 75 mol % of the Mg2(TiMg)0.5[BO3]O2 end member. Aluminum magnesioludwigites from Yakutia and Chukotka simultaneously contain tin and titanium. Mount Brooks, Alaska, contains tin-bearing azoproite or its tin-bearing varieties. New data are reported on Sb-and V-bearing orthoborates. Calciphyres of Alaska contain monoclinic magnesiohulsite (Mg,Fe)2(SnMg) 0.5 6+ [BO3]O2, which is replaced by schoenfliesite MgSn(OH)6. The studied borate occurrences belong to hypabyssal magnesian skarns of the periclase and monticellite metasomatic PT facies at contacts of dolomites with granitoid intrusions of increasing alkalinity or leucocratic granites. Their formation was related to interaction between disequilibrium kotoite and early oxides and spinellides of various compositions, on the one hand, and, on the other hand, to the influx of Ti-and Sn-bearing hydrothermal solutions.


Dolomite Geochemistry International Contact Aureole Skarn Deposit Heterovalent Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. M. Aleksandrov, V. L. Barsukov, and V. V. Shcherbina, Geochemistry of Endogenous Boron (Nauka, Moscow, 1968) [in Russian].Google Scholar
  2. 2.
    S. M. Aleksandrov, Geochemistry of Boron and Tin in the Deposits of the Magnesian-Skarn Formation (Nauka, Moscow, 1982) [in Russian].Google Scholar
  3. 3.
    S. M. Aleksandrov, Geochemistry of Skarn and Ore Formation in Dolomites (Nauka, Moscow, 1990) [in Russian].Google Scholar
  4. 4.
    S. M. Aleksandrov and N. N. Pertsev, “Correlation between Compositions of Magneisium-Iron Borates and Associated Minerals in Magnesian Skarns,” Geokhimiya, No. 11, 1328–1338 (1968).Google Scholar
  5. 5.
    N. N. Pertsev, Parageneses of Boron Minerals in the Magnesian Skarns (Nauka, Moscow, 1971) [in Russian].Google Scholar
  6. 6.
    F. Bachechi, M. Federico, and M. Fornaseri, “La ludwigite e i minerali che l’accompagnane nelle geodi delle “Pozzolane Nere” di Corcolle (Tivoli, Colli Albani),” Period. Mineral. 35, 975–1006 (1966).Google Scholar
  7. 7.
    D. S. Barker, L. E. Long, G. K. Hoops, et al., “Petrology and Rb-Sr Isotope Geochemistry of Intrusion in the Diablo Plateau, Northern Trans-Pecos Magmatic Province, Texas and New Mexico,” Bull. Geol. Soc. Am. 88, 1437–1446 (1977).CrossRefGoogle Scholar
  8. 8.
    M. Federico, “Sulla Breislakite,” Period. Mineral. 26, 191–210 (1957).Google Scholar
  9. 9.
    F. Zambonini, Mineralogia Vesuviana, (Torino, Italy, 1936).Google Scholar
  10. 10.
    S. M. Aleksandrov, “Geochemical Features of the Occurrence of Endogenous Borate Mineralization in Italy,” Geokhimiya, No. 10, 1440–1450 (1974).Google Scholar
  11. 11.
    S. M. Aleksandrov, “Magnesium-Iron Borates, Their Natural Modifications, and Analogues,” in “New Data on Minerals in the USSR” (Nauka, Moscow, 1976), No. 25, pp. 3–26 [in Russian].Google Scholar
  12. 12.
    S. M. Aleksandrov and M. A. Troneva, “Chromium Isomorphism in Endogenic Borates and Geochemical Characteristics of Their Genesis,” Geokhimiya, No. 7, 674–686 (1998) [Geochem. Int. 36, 599–610 (1998)].Google Scholar
  13. 13.
    S. M. Aleksandrov and M. A. Troneva, A. “Isomorphism in Borates of the Ludwigite-Vonsenite Series from Magnesian Skarns of North America,” Geokhimiya, No. 2, 172–186 (2000) [Geochem. Int. 38, 144–158 (2000)].Google Scholar
  14. 14.
    S. M. Aleksandrov, M. A. Troneva, and G. E. Kuril’chikova, “Tin-Bearing Borates of Hulsite-Paigeite Series from Skarn Deposits of Northeastern Russia: Composition and Geochemical Evidence for Genesis,” Geokhimiya, No. 7, 746–759 (2000) [Geochem. Int. 38, 676–688 (2000)].Google Scholar
  15. 15.
    S. M. Aleksandrov, M. A. Troneva, and G. E. Kuril’chikova, “Boron-Tin Mineralization in Contact Aureole at Brooks Mountain, Alaska, the USA: Composition and Geochemical Evidence for Genesis,” Geokhimiya, No. 8, 852–868 (2000) [Geochem. Int. 38, 772–787 (2000)].Google Scholar
  16. 16.
    S. M. Aleksandrov and M. A. Troneva, “Genesis and Composition of Borates of the Ludwigite-Vonsenite Series in Magnesian Skarns of the Urals, Siberia, and the Russian Far East,” Geokhimiya, No. 5, 525–543 (2004) [Geochem. Int. 42, 449–464 (2004)].Google Scholar
  17. 17.
    S. M. Aleksandrov and M. A. Troneva, “Genesis and Composition of Ludwigite-Vonsenite Borate Series in Magnesian Skarn of Central and East Asia,” Geokhimiya, No. 9, 992–1011 (2004) [Geochem. Int. 42, 870–886 (2004)].Google Scholar
  18. 18.
    A. A. Konev, V. S. Lebedeva, A. A. Kashaev, et al., “Azoproite—A New Mineral of the Ludwigite Group,” Zap. Vses. Mineral. Ob-Va 99(2), 225–231 (1970).Google Scholar
  19. 19.
    A. A. Konev and V. S. Samoilov, Contact Metamorphism and Metasomatism in the Aureole of the Tazheran Alkaline Intrusion (Nauka, Novosibirsk, 1974) [in Russian].Google Scholar
  20. 20.
    I. B. Savel’eva, Z. F. Ushchapovskaya, and T. I. Medvedeva, “New Data on Contact Metamorphism in the Ozerskii Massif,” Geol. Geofiz., No. 12, 51–59 (1990).Google Scholar
  21. 21.
    S. M. Aleksandrov, “Genesis and Mineralogy of Calc Skarns of the Prograde and Retrograde Metasomatic Stages,” Geokhimiya, No. 3, 281–297 (2002) [Geochem. Int. 40, 244–259 (2002)].Google Scholar
  22. 22.
    S. M. Aleksandrov and M. A. Troneva, “Geochemistry of Titanium and Its Modes of Occurrence in Metasomatically Altered Rocks at Skarn Deposits,” Geokhimiya, No. 1, 25–42 (2003) [Geochem. Int. 41, 21–37 (2003)].Google Scholar
  23. 23.
    A. A. Koneva and Z. F. Ushchapovskaya, “On Harkerite and Bulfonteinite from Skarns of the Tazheran Alkaline Massif,” Geol. Geofiz., No. 2, 74–78 (1991).Google Scholar
  24. 24.
    S. M. Aleksandrov, “Borates of the Sakhaite-Harkerite Series at Magnesian Skarn Deposits in the Northeast of Russia: Genesis and Isomorphism,” Geokhimiya, No. 9, 966–989 (2005) [Geochem. Int. 43, 881–903 (2005)].Google Scholar
  25. 25.
    N. N. Pertsev and S. M. Aleksandrov, “Ludwigite with High Alumina Content,” Zapiski Vses. Mineral. Ob-va 93(1), 13–20 (1964).Google Scholar
  26. 26.
    Tectonics, Geodynamics, and Metallogeny of the Territory of the Sakha Republic (Yakutia) (Nauka, Moscow, 2001) [in Russian].Google Scholar
  27. 27.
    S. M. Aleksandrov, “Genesis and Composition of Ore-Forming Magnesian Borates, Their Analogues, and Modifications,” Geokhimiya, No. 5, 492–512 (2003) [Geochem. Int. 41, 440–458 (2003)].Google Scholar
  28. 28.
    S. M. Aleksandrov, “Geochemical Features of Hydration of Magnesian Borates,” Geokhimiya (in press).Google Scholar
  29. 29.
    S. M. Aleksandrov, “Geochemical Features of Boron and Tin in the Formation of Skarn Deposits of the Northern Part of the Pacific Ore Belt,” in Proceedings of 6th All-Russian Metallogenic Conference, Vladivostok, Russia, 1971 (Vladivostok, 1971), pp. 104–105 [in Russian].Google Scholar
  30. 30.
    S. M. Aleksandrov, “Geochemical Features of Formation of Boron-Tin Ores at the Deposits of Alaska, USA,” Geokhimiya, No. 4, 483–495 (1975).Google Scholar
  31. 31.
    S. M. Aleksandrov, “Endogenic Transformations of Kotoite in Calciphyres at Magnesian-Skarn Deposits of Boron,” Geokhimiya, No. 7, 733–752 (2007) [Geochem. Int. 45, 666–684 (2007)].Google Scholar
  32. 32.
    A. Knopf, “Geology of the Seward Peninsula Tin Deposits, Alaska,” Bull. U.S. Geol. Surv. 358, (1908).Google Scholar
  33. 33.
    A. Knopf and W. T. Schaller, “Hulsite and Paigeite, Two New Minerals of the Contact-Metamorphic Origin,” Am. J. Sci. 25 (Ser. 4), 323–331 (1908).Google Scholar
  34. 34.
    A. C. Vlisidis and W. T. Schaller, “The Identity of Paigeite with Vonsenite, and Chemical Analyses of Von senite, Ludwigite, and Hulsite,” Neues Jahrb. Miner. Monatsh., Nos. 3–4, 95–105 (1974).Google Scholar
  35. 35.
    S. M. Aleksandrov and V. G. Senin, “Genesis and Composition of Spinellide and Related Mineral Assemblages in Greisenized Magnesian Skarn and Dolomite at the Hsianghualing Deposit, the People’s Republic of China,” Geokhimiya, No. 9, 952–966 (2002) [Geochem. Int. 40, 860–873 (2002)].Google Scholar
  36. 36.
    R. C. Erd and E. E. Foord, “Chestermanite, a New Member of Ludwigite-Pinakiolite Group from Fresno County, California,” Can. Mineral. 26 Part 4, 911–916 (1988).Google Scholar
  37. 37.
    S. M. Aleksandrov and M. A. Troneva, “Genesis and Mineralogical Composition of Boron-Bearing Skarns in Twin Lakes Dolomites, Sierra Nevada, California,” Geokhimiya, No. 2, 156–168 (2002) [Geochem. Int. 40, 129–140 (2002)].Google Scholar
  38. 38.
    P. J. Dunn, D. R. Peacor, W. B. Simmons, et al., “Fredrikssonite, a New Member of the Pinakiolite Group, from Längban, Sweden,” Geol. Fören. Stockholm Fdrhandl. 105(4), 335–340 (1983).Google Scholar
  39. 39.
    G. Raade, M. H. Mladeck, V. K. Din, et al., “Blatterite, a New Sb-Bearing Mn2+-Mn3+-Member of the Pinakiolite Group, from Nordmark, Sweden,” Neues Jahrb. Mineral., Monatsh., No. 3, 121–136 (1988).Google Scholar
  40. 40.
    S. Hansen, U. Halemius, and B. Lindquist, “Antimony-Rich Pinakiolite from Langban, Sweden: A New Structural Variety,” Neues Jahrb. Mineral., Monatsh., No. 5, 231–239 (1988).Google Scholar
  41. 41.
    M. A. Cooper and F. C. Hawthorne, “The Crystal Structure of Blatterite, Sb35+ (Mn3+, Fe3+)9. (Mn2+, Mg)35(BO3)16O32, and Structural Hierarchy in Mn3+-Bearing Zigzag Borates,” Can. Mineral. 36 Part 5, 1171–1193 (1998).Google Scholar
  42. 42.
    P. J. Dunn, D. R. Peacor, A. J. Criddle, et al., “Fillipstadite, a New Mn-Fe3+-Sb Derivative of Spinel, from Längban, Sweden,” Am. Mineral. 73(3–4), 413–419 (1988).Google Scholar
  43. 43.
    N. B. Harris and M. T. Einaudi, “Skarn Deposits in the Yerington District, Nevada: Metasomatic Skarn Evolution near Ludwig,” Econ. Geol. 77(7), 877–898 (1982).CrossRefGoogle Scholar
  44. 44.
    S. M. Aleksandrov and M. A. Troneva, “Endogenic Orthoborates in Europe: Genesis and Composition,” Geokhimiya, No. 6, 639–656 (2002) [Geochem. Int. 40, 576–593 (2002)].Google Scholar
  45. 45.
    S. M. Aleksandrov, “Genesis and Composition of Borate and Sulfide Mineralization in the Mount Jumbo Dunite, Snohomish County, Washington, United States,” Geokhimiya, No. 3, 312–326 (2005) [Geochem. Int. 43, 277–289 (2005)].Google Scholar
  46. 46.
    S. M. Aleksandrov, “Genesis and Mineralogical Composition of Manganese Skarn of Prograde and Retrograde Stages of Metasomatism in Carbonate Rocks,” Geokhimiya, No. 7, 952–966 (2002) [Geochem. Int. 40, 649–663 (2002)].Google Scholar
  47. 47.
    W. T. Schaller and A. C. Vlisidis, “Composition of Aluminian Ludwigite from Crestmore, California,” Am. Mineral. 46(3–4), 453–457 (1961).Google Scholar
  48. 48.
    G. T. Faust and W. T. Schaller, “Schoenfliesite, MgSn(OH)6,” Ztschr. Kristallogr. 134, 116–141 (1971).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • S. M. Aleksandrov
    • 1
  • M. A. Troneva
    • 1
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations