Skip to main content
Log in

Fe- and Al-Rich metapelites of the Teiskaya Group, Yenisei Range: Geochemistry, protoliths, and the behavior of their material during metamorphism

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The Fe- and Al-rich metapelite of the Teiskaya Group in the trans-Angara part of the Yenisei Range are characterized by variable P-T parameters of their metamorphism. Geochemical data on these rocks were used to reproduce the nature and composition of their protolith. The metapelites were determined to be redeposited and metamorphosed Precambrian weathering crusts of the kaolinite type, which were produced by the erosion of Archean rocks of predominantly acid (granitoid) composition in shallow-water continental-margin basins in a humid climate. These results are consistent with the results of the lithological-facies analysis and geodynamic reconstruction of the Precambrian geological evolution of complexes in the Yenisei range. Differences were revealed between the REE patterns in metapelites in various metamorphic zones caused by both the compositional heterogeneity of the protoliths and the prograde (in terms of pressure) mineral reactions of collision metamorphism with the predominant effects of various processes during different evolutionary stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Maslov, E. Z. Gareev, and M. T. Krupenin, “Terrigenous Sedimentary Sequences in the Riphean Stratotype: Contribution of Recycling and Input of the First Cycle Material,” Geokhimiya, No. 2, 158–181 (2005) [Geochem. Int. 43, 131–152 (2005)].

  2. A. V. Maslov, M. T. Krupenin, Yu. L. Ronkin, et al., “Fine-Grained Aluminosiliciclastic Rocks of the Middle Riphean Stratotype Section in the Southern Urals: Formation Conditions, Composition and Provenance Evolution,” Litol. Polezn. Iskop., No. 4, 414–441 (2004) [Lithol. Miner. Resour. 39, 357–381 (2004)].

  3. R. Cox and D. R. Lowe, “Controls on Sediment Composition on a Regional Scale: a Conceptual Review,” J. Sediment. Res. A65, 1–12 (1995).

    Google Scholar 

  4. S. M. McLennan, “Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes,” in Geochemistry and Mineralogy of Rare Earth Elements, Ed. by B. R. Lipin and G. A. McKay (Mineral. Soc. Am., Washington, 1989), pp. 169–200.

    Google Scholar 

  5. S. R. Taylor and S. M. McLennan, “The Geochemical Evolution of the Continental Crust,” Rev. Geophys. 33, 241–265 (1995).

    Article  Google Scholar 

  6. D. J. Wronkiewicz and K. C. Condie, “Geochemistry of Archean Shales from the Witwaterstrand Supergroup, South Africa: Source-Area Weathering and Provenance,” Geochim. Cosmochim. Acta 51, 2401–2416 (1987).

    Article  Google Scholar 

  7. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985; Mir, Moscow, 1988), p. 379 [in Russian].

    Google Scholar 

  8. I. I. Likhanov, “Chloritoid, Staurolite and Gedrite of the High-Alumina Hornfelses of the Karatash Pluton,” Int. Geol. Rev. 30, 868–877 (1988).

    Article  Google Scholar 

  9. I. I. Likhanov, “Gradient in the Composition of the Metamorphic Fluid in Metapelite Hornfelses,” Geokhimiya, No. 7, 1057–1062 (1988).

  10. I. I. Likhanov, V. V. Reverdatto, V. S. Sheplev, et al., “Contact Metamorphism of Fe-and Al-Rich Graphitic Metapelites in the Transangarian Region of the Yenisey Ridge, Eastern Siberia, Russia,” Lithos 58, 55–80 (2001).

    Article  Google Scholar 

  11. I. I. Likhanov, “Mineral Reactions in Aluminous and Ferruginous Hornfels in Relation with the Problem of Stability of Rare Contact Metamorphism Mineral Assemblages,” Geol. Geofiz. 44(4), 305–316 (2003).

    Google Scholar 

  12. I. I. Likhanov, O. P. Polyansky, V. V. Reverdatto, and I. Memmi, “Evidence from Fe-and Al-Rich Metapelites for Thrust Loading in the Transangarian Region of the Yenisey Ridge, Eastern Siberia,” J. Metamorph. Geol. 22, 743–762 (2004).

    Article  Google Scholar 

  13. I. I. Likhanov, “Evolution of Chemical Composition of Metapelite Minerals during Low-Grade Contact Metamorphism,” International Geology Review 30, 878–887 (1988).

    Article  Google Scholar 

  14. I. I. Likhanov, V. S. Sheplev, V. V. Reverdatto, and P. S. Kozlov, “Contact Metamorphism of Ferruginous Metapelites at High Pressure in the Trans-Angara Region, Yenisei Range,” Dokl. Akad. Nauk 362, 673–676 (1998) [Dokl. Earth Sci. 363, 1107–1110 (1998)].

    Google Scholar 

  15. I. K. Likhanov, V. S. Sheplev, V. V. Reverdatto, et al., “On the Isochemical Nature of Contact Metamorphism of Aluminous Metapelites: Aureoles of the Ayakhta Granitoid Massif, Yenisei Range,” Geol. Geofiz. 40, 90–97 (1999).

    Google Scholar 

  16. I. I. Likhanov, O. P. Polyanskii, V. V. Reverdatto, et al., “Metamorphic Evolution of Aluminous Metapelites in the Vicinity of the Panimbinsky Overthrust, Yenisei Range: Mineral Assemblages, P-T Parameters, and a Tectonic Model,” Geol. Geofiz. 42, 1205–1220 (2001).

    Google Scholar 

  17. I. I. Likhanov and V. V. Reverdatto, “Petrogenetic Grid for Ferruginous-Aluminous Metapelites in the K2O-FeO-MgO-Al2O3-SiO2-H2O System,” Dokl. Akad. Nauk 394, 89–92 (2004) [Dokl. Earth. Sci, 394, 46–50 (2004)].

    Google Scholar 

  18. I. I. Likhanov and V. V. Reverdatto, “Mineral Equilibria and P-T Diagram for Fe-Al Metapelites in the KFMASH System (K2O-FeO-MgO-Al2O3-SiO2-H2O),” Petrologiya 13, 81–92 (2005) [Petrology 13, 73–83 (2005)].

    Google Scholar 

  19. V. K. Golovenok, Precambrian Aluminous Rock Associations (Nedra, Leningrad, 1977) [in Russian].

    Google Scholar 

  20. M. Franceschelli, M. Puxeddu, and M. Gattiglio, “Geochemistry and Origin of Chloritoid Schists from the Alpi Apuane, Italy: Evidence of a Prevailing Lateritic Signature,” Eur. J. Mineral. 15, 575–588 (2003).

    Article  Google Scholar 

  21. M. Q. Jan and M. Rafiq, “Petrology of Chloritoid-Ilmenite-Rich Rocks in the Indus Suture Melange of Pakistan: Implications for the Cretaceous Paleolatitude of Kohistan,” J. Asian Earth Sci. (2006). Doi:10.1016/j.jseases.2006.07.010.

  22. Ya. E. Yudovich and M. P. Ketris, Principles of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  23. R. I. Grauch, “Rare Earth Elements in Metamorphic Rocks,” in Geochemistry and Mineralogy of Rare Earth Elements (Mineral. Soc. Am., Washington, 1989), pp. 147–167.

    Google Scholar 

  24. K. C. Condie, “Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales,” Chem. Geol. 104, 1–37 (1993).

    Article  Google Scholar 

  25. S. M. McLennan, S. R. Hemming, S. R. Taylor, and K. A. Eriksson, “Early Proterozoic Crustal Evolution: Geochemical and Nd-Pb Isotopic Evidence from Metasedimentary Rocks, Southwestern North America,” Geochim. Cosmochim. Acta 59, 1153–1177 (1995).

    Article  Google Scholar 

  26. Y. Rolland, S. Cox, A.-M. Boullier, et al., “Rare Earth and Trace Element Mobility in Mid-Crustal Shear Zones: Insights from the Mont Blanc Massif (Western Alps),” Earth Planet. Sci. Lett. 214, 203–219 (2003).

    Article  Google Scholar 

  27. P. Cerny, B. J. Fryer, F. J. Longsstaffe, and H. Y. Tammemagi, “The Archean Lac du Bonner Batholith, Manitoba: Igneous History, Metamorphic Effects, and Fluid Overprinting,” Geochim. Cosmochim. Acta 51, 1153–1177 (1987).

    Article  Google Scholar 

  28. H. J. Stable, M. Raith, S. Hoernes, and A. Delfs, “Element Mobility During Incipient Granulite Formation at Kabbaldurga, Southern India,” J. Petrol. 28, 803–834 (1987).

    Google Scholar 

  29. R. D. Vocke, Jr., G. N. Hanson, and M. Grunenfelder, “Rare Earth Mobility in the Roffna Gneiss, Switzerland,” Contrib. Mineral. Petrol. 95, 145–154 (1987).

    Article  Google Scholar 

  30. A. D. Nozhkin, “Formation Stages and Evolution of the Continental Crust in the Precambrian of the Southwestern Margin of the Siberian Craton,” in Evolution of Tectonic Processes in the Earth’s History (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2004), pp. 57–60 [in Russian].

    Google Scholar 

  31. S. A. Pisarevsky, M. T. D. Wingate, C. Powell, S. Johnson, and D. I. Evans, “Models of Rodinia Assembly and Fragmentation,” in Proterozoic East Gondwana: Supercontinent Assembly and Breakup, Ed. by M. Yoshida et al., Geo. Soc. London Spec. Publ. 206, 35–55 (2003).

  32. S. V. Krylov, A. L. Krylova, and B. P. Mishen’kin, “Deep-Seated Seismic Studies of the Junction Zone of the Western Siberian Plate and Siberian Platform,” Geol. Geofiz., No. 2, 3–15 (1967).

  33. V. S. Surkov, V. P. Korobeinikov, S. V. Krylov, et al., “Geodynamic and Sedimentation Conditions of the Formation of the Riphean Oil-and Gas-Bearing Complexes on the Western Margin of the Siberian Paleocontinent,” Geol. Geofiz. 37(8), 154–165 (1996).

    Google Scholar 

  34. S. Yu. Belyaev and A. K. Basharin, “Modern Structure, Evolution and Oil and Gas Potential of the Junction Zone of the Siberian Platform and Western Siberian Plate,” Geol. Geofiz. 42(4), 736–745 (2001).

    Google Scholar 

  35. V. S. Starosel’tsev, A. V. Migurskii, K. V. Starosel’tsev, et al., “Yenisei Range and Its Junction with the Western Siberian Plate and Siberian Platform,” Geol. Geofiz. 44(1–2), 76–85 (2003).

    Google Scholar 

  36. T. N. Kheraskova, New Data on the Structure of the Yenisei Range, Geotektonika, No. 1, 15–27 (1999) [Geotectonics 33, 12–23 (1999)].

  37. L. I. Lobkovskii, A. M. Nikishin, and V. E. Khain, Modern Problems of Geotectonics and Geodynamics (Nauchnyi Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  38. V. A. Vernikovsky, A. E. Vernikovskaya, A. B. Kotov, et al., “Neoproterozoic Accretionary and Collisional Events on the Western Margin of the Siberian Craton: New Geological and Geochronological Evidence from the Yenisey Ridge,” Tectonophysics 375, 147–168 (2003).

    Article  Google Scholar 

  39. C. A. Smit, D. D. Van Reenen, T. V. Gerya, et al., “Structural-Metamorphic Evolution of the Yenisey Range of Eastern Siberia,” Mineral. Petrol. 69, 35–67 (2000).

    Article  Google Scholar 

  40. A. S. Egorov, Deep-Seated Structure and Geodynamics of the Lithosphere of Northern Eurasia: Evidence from Geological-Geophysical Modeling along the Geotraverses of Russia (VSEGEI, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  41. M. M. Konstantinov, R. F. Dankovtsev, and G. S. Simkin, and S. V. Cherkasov, “Deep Structure of the North Enisei Gold District (Russia) and Setting of Ore Deposits,” Geol. Rudn. Mestorozhd. 41(5), 425–436 (1999) [Geol. Ore. Dep. 41, 397–397 (1999).

    Google Scholar 

  42. P. S. Kozlov and G. G. Lepezin, “Petrology, Petrochemistry, and Metamorphism of the Rocks of the Trans-Angara Area of the Yenisei Range,” Geol. Geofiz. 36, 3–22 (1995).

    Google Scholar 

  43. A. D. Nozhkin, O. M. Turkina, and V. A. Bobrov, “Radioactive and Rare Earth Elements in Metapelites as Indicators of Composition and Evolution of the Precambrian Continental Crust in the Southwestern Margin of the Siberian Craton,” Dokl. Akad. Nauk 390, 813–817 (2003) [Dokl. Earth Sci. 391, 718–722 (230)].

    Google Scholar 

  44. E. S. Postel’nikov, “Upper Proterozoic Structures and Complexes of the Eastern Yenisei Range,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 65, 14–31 (1990).

    Google Scholar 

  45. A. D. Nozhkin, O. M. Turkina, E. V. Bibikova, A. A. Terleev, and V. V. Khomentovskii, “Riphean Granite-Gneiss Cupola of the Yenisei Range: Geology and U-Pb Isotopic Age,” Geol. Geofiz. 40, 1305–1313 (1999).

    Google Scholar 

  46. I. I. Likhanov, P. S. Kozlov, O. P. Polyanskii, et al., “Neoproterozoic Age of Collisional Metamorphism in the Transangara Region of the Yenisei Ridge (Based on 40Ar/39Ar Data),” Dokl. Akad. Nauk 412(6), 799–803 (2007) [Dokl. Earth Sci. 413, 234–237 (2007)].

    Google Scholar 

  47. E. A. Zvyagina, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Izd-vo IGU, Irkutsk, 1989).

    Google Scholar 

  48. M. I. Volobuev, S. I. Zykov, and N. I. Stupnikova, “Yenisei Fold System,” in Precambrian Geochronology of the Siberian Platform and Its Folded Framing, Ed. by M. M. Manuilov (Nauka, Leningrad, 1968), pp. 266–274 [in Russian].

    Google Scholar 

  49. M. I. Volobuev, S. I. Zykov, and N. I. Stupnikova, “Geochronology of the Precambrian Complexes of the Sayan-Yenisei Region, Siberia,” in Actual Problems of Modern Geochronology (Nauka, Moscow, 1976), pp. 96–123 [in Russian].

    Google Scholar 

  50. M. I. Volobuev, N. I. Stupnikova, and S. I. Zykov, “Yenisei Range,” in Geochronology of USSR. Vol. 1. Precambrian, Ed. by Yu. I. Polovinkina (Nedra, Leningrad, 1973), pp. 189–201 [in Russian].

    Google Scholar 

  51. I. I. Likhanov, P. S. Kozlov, K. V. Popov, V. V. Reverdatto, and A. E. Vershinin, “Collisional Metamorphism As a Result of Thrusting in the Transangara Region of the Yenisei Ridge,” Dokl. Akad. Nauk 411, 235–239 (2006) [Dokl. Earth Sci. 411, 1313–1317 (2006)].

    Google Scholar 

  52. I. I. Likhanov, K. V. Popov, and V. V. Reverdatto, “On Heterogeneity of Collisional Metamorphism in the Precambrian Polymetamorphic Complexes of the Trans-Angara Region, Yenisei Range” in Proceedings of Scientific Conference on Metamorphism and Geodynamics, Yekaterinburg, Russia, 2006 (Inst. Geol. Geokhim., Yekaterinburg, 2006), pp. 42–46 [in Russian].

    Google Scholar 

  53. R. Kretz, “Symbols for Rock-Forming Minerals,” Am. Mineral. 68, 277–279 (1983).

    Google Scholar 

  54. N. L. Dobretsov, V. S. Sobolev, and V. V. Khlestov, Facies of Moderate-Pressure Regional Metamorphism (Nedra, Moscow, 1972) [in Russian].

    Google Scholar 

  55. N. L. Dobretsov, V. S. Sobolev, K. V. Sobolev, and V. V. Khlestov, Facies of High-Pressure Regional Metamorphism (Nedra, Moscow, 1974) [in Russian].

    Google Scholar 

  56. D. R. M. Pattison, “Stability of Andalusite and Sillimanite and the AI2SiO5 Triple Point: Constraints from the Ballachulish Aureole, Scotland,” J. Geol. 100, 423–446 (1992).

    Article  Google Scholar 

  57. C. W. Passchier and R. A. J. Trouw, Microtectonics (Springer, Berlin, Heidelberg, New York, 1996).

    Google Scholar 

  58. V. V. Reverdatto and V. S. Sheplev, “Geodynamic Factors of Metamorphism and Their Modeling: Review and Analysis of the Problem,” Geol. Geofiz. 39(12), 1679–1692 (1998).

    Google Scholar 

  59. I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and K. V. Popov, “Collisional Metamorphism of the Precambrian Complexes in the Trans-Angara Part of the Yenisei Range,” Petrologiya. 2007. (in press)

  60. S. N. Korobeinikov and O. P. Polyansky, I. I. Likhanov, V. G. Sverdlova, and V. V. Reverdatto, “Mathematical Modeling of Overthrusting as a Cause of Andalusite-Kyanite Metamorphic Zoning in the Yenisei Ridge,” Dokl. Akad. Nauk 408, 512–516 (2006) [Dokl. Earth Sci. 408, 652–656 (2006)].

    Google Scholar 

  61. A. A. Predovskii, Reconstruction of the Conditions of the Early Precambrian Sedimentation and Volcanism (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  62. H. W. Nesbitt and G. M. Young, “Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lulites,” Nature 299, 715–717 (1982).

    Article  Google Scholar 

  63. J. N. J. Visser and G. M. Young, “Major Element Geochemistry and Paleoclimatology of the Permo-Carboniferous Glaciogene Dwyka Formation and Post-Glacial Mudrocks in Southern Africa,” Paleogeogr. Paleoclimat. Paleoecol. 81, 49–57 (1990).

    Article  Google Scholar 

  64. L. Harnois, “The CIW Index: a New Chemical Index of Weathering,” Sediment. Geol. 55, 319–322 (1988).

    Article  Google Scholar 

  65. R. Cox, D. R. Lowe, and R. L. Cullers, “The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States,” Geochim. Cosmochim. Acta 59, 2919–2940 (1995).

    Article  Google Scholar 

  66. C. M. Fedo, H. W. Nesbitt, and G. M. Young, “Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosoils, with Implications for Paleoweathering Conditions and Provenance,” Geology 23, 921–924 (1995).

    Article  Google Scholar 

  67. Yu. A. Balashov, Geochemistry of Rare-Earth Elements (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

  68. R. W. Murray, M. R. Buchholtz Ten Brink, D. L. Jones, et al., “Rare Earths Elements as Indicator of Different Marine Depositional Environments in Chert and Shale” Geology 18, 268–272 (1990).

    Article  Google Scholar 

  69. H. Martin, “Effect of Stepper Archean Geothermal Gradients on Geochemistry of Subduction-Related Magmas,” Geology 14, 753–756 (1986).

    Article  Google Scholar 

  70. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks,” J. Petrol. 25, 956–983 (1984).

    Google Scholar 

  71. J. A. Pearce, “Sources and Settings of Granitic Rocks,” Episodes 19, 120–125 (1996).

    Google Scholar 

  72. E. P. Akul’shina, “Evolution of the Conditions of Weathering and Sedimentation in the Riphean and Phanerozoic of the Siberian Platform, its Framing and Western Siberian Plate,” in Comparative Analysis of Marine Sedimentation in Precambrian and Paleozoic (Nauka, Novosibirsk, 1980), pp. 101–125 [in Russian].

    Google Scholar 

  73. S. V. Saraev, “Lithology and Petrochemistry of the Riphean Clay Rocks of the Yenisei Range,” in Clay Minerals in the Sedimentary Rocks of Siberia (IGiG SO AN SSSR, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  74. V. T. Petrov, Precambrian of the Western Framing of the Siberian Platform (Nauka, Novosibirsk, 1982), p. 206 [in Russian].

    Google Scholar 

  75. M. J. Holdaway, B. L. Dutrow, and R. W. Hinton, “Devonian and Carboniferous Metamorphism in West-Central Maine: The Muscovite-Almandine Geobarometer and the Staurolite Problem Revisited,” Am. Mineral. 73, 20–47 (1988).

    Google Scholar 

  76. V. V. Reverdatto and V. Yu. Kolobov, “Mass Transfer during Metamorphism,” Geol. Geofiz. 3, 3–12 (1987).

    Google Scholar 

  77. I. K. Likhanov and V. V. Reverdatto, Mass Transfer during Andalusite Replacement by Kyanite in Al-and Fe-Rich Metapelites in the Yenisei Range,” Petrologiya 10(5), 541–558 (2002) [Petrology 10, 479–494 (2002)].

    Google Scholar 

  78. I. I. Likhanov, “Low-Temperature Biotite Isograde in the Contact Aureole of the Kharlovso Gabbro Massif, Northwestern Altai,” Geol. Geofiz., No. 7, 46–54 (1989).

  79. I. I. Likhanov, “Decomposition of Epidote during Low-Temperature Contact Metamorphism of Metapelites,” Zap. Vses. Mineral. O-va 119, 40–48 (1990).

    Google Scholar 

  80. I. I. Likhanov, A. A. Ten, V. V. Reverdatto, et al., “Inverse Modeling Approach for Obtaining Kinetic Parameters of Diffusion-Controlled Metamorphic Reactions in the Kharlovo Contact Aureole (South Siberia, Russia),” Mineral. Petrol. 71, 51–65 (2001).

    Article  Google Scholar 

  81. I. I. Likhanov, V. V. Reverdatto, and I. Memmi, “Short-Range Mobilization of Elements in the Biotite Zone of Contact Aureole of the Kharlovo Gabbro Massif (Russia),” Eur. J. Mineral., No. 6, 133–144 (1994).

  82. I. I. Likhanov, V. V. Reverdatto, and I. Memmi, “The Origin of Arfvedsonite in Metabasites from the Contact Aureole of the Kharlovo Gabbro Intrusion (Russia),” Eur. J. Mineral. 7, 379–389 (1995).

    Google Scholar 

  83. J. M. Ferry, “A Biotite Isograde in South-Central Maine, USA: Mineral Reactions, Fluid Transfer,” J. Petrol. 25, 871–893 (1984).

    Google Scholar 

  84. J. M. Ferry, “Applications of the Reaction Progress Variable in Metamorphic Petrology,” J. Petrol. 24, 343–376 (1983).

    Google Scholar 

  85. T. J. B. Holland and R. Powell, “An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest,” J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  86. S. Wolfram, The Mathematica Book (Wolfram Media, Champaign, 2003).

    Google Scholar 

  87. G. T. R. Droop and B. Harte, “The Effect of Mn on the Phase Relations of Medium-Grade Pelites: Constraints from Natural Assemblages on Petrogenetic Grid Topology,” J. Petrol. 36, 1549–1578 (1995).

    Google Scholar 

  88. M. J. Kohn, D. L. Orange, F. S. Spear, and D. Rumble, III, and T. M. Harrison, “Pressure, Temperature, and Structural Evolution of West-Central New Hampshire: Hot Thrusts Over Cold Basement,” J. Petrol. 33, 521–556 (1992).

    Google Scholar 

  89. G. Hoschek, “The Stability of Staurolite and Chloritoid and Their Significance in Metamorphism of Pelitic Rocks,” Contrib. Mineral. Petrol. 22, 208–232 (1969).

    Article  Google Scholar 

  90. G. Hoschek, “Untersuchungen zum Stabilitatsbereich von Chloritoid und Staurolith,” Contrib. Mineral. Petrol. 14, 123–163 (1967).

    Article  Google Scholar 

  91. G. H. Symmes and J. M. Ferry, “The Effect of Whole-Rock MnO Content on the Stability of Garnet in Pelitic Schists During Metamorphism,” J. Metamorph. Geol. 10, 221–237 (1992).

    Article  Google Scholar 

  92. D. M. Shaw, “Geochemistry of Pelitic Rocks. Part III: Major Elements and General Geochemistry,” Geol. Soc. Am. Bull. 67, 913–934 (1956).

    Article  Google Scholar 

  93. J. B. Thompson, Jr., “The Graphical Analysis of Mineral Assemblages in Pelitic Schists,” Am. Mineral. 42, 842–858 (1957).

    Google Scholar 

  94. I. I. Likhanov, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2002).

    Google Scholar 

  95. A. E. Vernikovskaya, V. A. Vernikovskii, E. B. Sal’nikova, et al., “Granitoids of the Erudinsky and Chrimbinsky Massifs of the Yenisei Range—Indicators of Neoproterozoic Collisional Events,” Geol. Geofiz. 43(3), 259–272 (2002).

    Google Scholar 

  96. A. E. Vernikovskaya, V. A. Vernikovskii, E. B. Sal’nikova, et al., “Neoproterozoic Postcollisional Granitoids of the Glushikha Complex, Yenisei Range,” Petrologiya 11, 53–67 (2003) [Petrology 11, 48–61 (2003)].

    Google Scholar 

  97. I. I. Likhanov, V. V. Reverdatto, and A. E. Vershinin, “Geochemical Evidence of Protolith Origin of Fe and Al-Rich Metapelites of the Kuznetsk Alatau and Yenisei Range,” Geol. Geofiz. 47(1), 119–131 (2006).

    Google Scholar 

  98. I. I. Likhanov, V. V. Reverdatto, and A. E. Vershinin, “Geochemistry and Nature of the Protolith of Ferruginous-Aluminous Metapelites in Kuznetsk Alatau,” Dokl. Akad. Nauk 404, 671–675 (2005) [Dokl. Earth Sci. 405, 1183–185 (2005)].

    Google Scholar 

  99. I. I. Likhanov and V. V. Reverdatto, “Provenance of Precambrian Fe-and Al-Rich Metapelites in the Yenisey Ridge and Kuznetsk Alatau, Siberia: Geochemical Signatures,” Acta Geol. Sinica-English Edition, 2007 (in press).

  100. A. E. Vershinin, I. I. Likhanov, and V. V. Reverdatto, “Geochemistry and Nature of the Protolith of Lower Proterozoic Fe-Al Metapelites in the Transangara Region, Yenisei Ridge,” Dokl. Akad. Nauk 415, (2007) [Dokl. Earth Sci. 415, 804–809 (2007)].

  101. R. L. Sullers, V. Vosk, and S. Guidotti, “Elemental Distributions and Neodymium Isotopic Compositions of Silurian Metasediments, western Maine, USA: Redistribution of the Rare Earth Elements,” Geochim. Cosmochim. Acta 61, 1847–1861 (1997).

    Article  Google Scholar 

  102. J. M. G. Lopez and B. Bauluz, C. Fernandez-Nieto, and A. Y. Oliete, “Factors Controlling the Trace-Element Distribution in Fine-Grained Rocks: The Albian Kaolinite-Rich Deposits of the Oliete Basin (NE Spain),” Chem. Geol. 214, 1–19 (2005).

    Article  Google Scholar 

  103. K. Sifeta, B. P. Roser, and J.-I. Kimura, “Geochemistry, Provenance, and Tectonic Settings of Neoproterozoic Metavolcanic and Metasedimentary Units, Werri Area, Northern Ethiopia,” J. Afr. Earth Sci. 41, 212–234 (2005).

    Article  Google Scholar 

  104. S. Alirezaei and E. M. Cameron, “Mass Balance During Gabbro-Amphibolite Transition, Bamble Sector, Norway: Implications for Petrogenesis and Tectonic Setting of the Gabbros,” Lithos. 60, 21–45 (2002).

    Article  Google Scholar 

  105. E. Bea and P. Montero, “Behavior of Accessory Phases and Redistribution of Zr, REE, Y, Th, and U during Metamorphism and Partial Melting of Metapelites in the Lower Crust: An Example from the Kinzigite Formation of Ivrea-Verbano, NW Italy,” Geochim. Cosmochim. Acta 63, 1133–1153 (1999).

    Article  Google Scholar 

  106. A. Brunsmann, G. Franz, and J. Erzinger, “REE Mobilization During Small-Scale High-Pressure Fluid-Rock Interaction and Zoisite/Fluid Partitioning of La to Eu,” Geochim. Cosmochim. Acta, 65, 559–570 (2001).

    Article  Google Scholar 

  107. D. Mulrooney and T. Rivers, “Redistribution of the Rare-Earth Elements among Coexisting Minerals in Metamorphic Rocks across the Epidote-Out Isograd: An Example from the St. Anthony Complex, Northern Newfoundlend, Canada,” Can. Mineral. 43, 263–294 (2005).

    Article  Google Scholar 

  108. T. Menard and N. M. Gordon, “Metamorphic P-T paths from the Eastern Flin Flon Belt and Kisseynew Domain, Snow Lake, Manitoba,” Can. Mineral. 35, 1093–1115 (1997).

    Google Scholar 

  109. D. M. Pattison, “Instability of Al2SiO5 “Triple-Point” Assemblages in Muscovite + Biotite + Quartz-Bearing Metapelities, with Implications,” Am. Mineral. 86, 1414–1422 (2001).

    Google Scholar 

  110. T. Graesner and V. Schenk, “Low-pressure Metamorphism of Paleozoic Pelites in the Aspromonte, Southern Calabria: Constraints for the Thermal Evolution in the Calabrian Crustal Cross-Section during the Hercynian Orogeny,” J. Metamorph. Geol. 17, 152–172 (1999).

    Google Scholar 

  111. R. H. Vernon, Metamorphic Processes. Reactions and Microstructure Development (Allen-Unwin, London, 1976).

    Google Scholar 

  112. B. Cesare, “Multi-Stage Pseudomorphic Replacement of Garnet During Polymetamorphism: 2. Algebraic Analysis of Mineral Assemblages,” J. Metamorph. Geol. 17, 735–746 (1999).

    Article  Google Scholar 

  113. D. L. Whitney, T. A. Mechum, S. M. Kuehner, and Y. R. Dilek, “Progressive Metamorphism of Pelitic Rocks from Protolith to Granulite Facies, Duchess County, New York, USA: Constraints on the Timing of Fluid Infiltration during Regional Metamorphism,” J. Metamorph. Geol. 14, 163–181 (1996).

    Article  Google Scholar 

  114. C. T. Foster, Jr., “A Thermodynamic Model of Mineral Segregations in the Lower Sillimanite Zone Near Rangeley, Maine,” Am. Mineral. 66, 260–277 (1981).

    Google Scholar 

  115. C. T. Foster, Jr., “Mass Transfer in Sillimanite-Bearing Pelitic Schists Near Rangeley, Maine,” Am. Mineral. 62, 727–746 (1977).

    Google Scholar 

  116. C. T. Foster, Jr., “Thermodynamic Models of Reactions Involving Garnet in a Sillimanite / Staurolite Schists,” Mineral. Mag. 50, 427–439 (1986).

    Article  Google Scholar 

  117. C. Triboulet and C. Audren, “Continuous Reactions between Garnet, Staurolite, Kyanite-Sillimanite-Andalusite and P-T-time-Deformation Path in Mica Schists from the Estuary of the River Vilaine, South Brittany, France,” J. Metamorph. Geol. 3, 91–105 (1985).

    Article  Google Scholar 

  118. K. H. Brodie and E. H. Rutter, “On the Relationship between Deformation and Metamorphism with Special Reference To the Behaviour of Basic Rocks,” in Metamorphic Reactions. Kinetics, Textures and Deformations, Ed. by A. B. Thompson and D. C. Rubie, Adv. Phys. Geochem. 4, 138–179 (1985).

  119. J. A. Thomson and C. V. Guidotti, “Carboniferous Barrovian Metamorphism in Southern Maine,” Studies in Maine Geology 3, 35–51 (1989).

    Google Scholar 

  120. F. S. Spear, “Relative Thermobarometry and Metamorphic P-T Paths,” in Evolution of Metamorphic Belts, Ed. by J. S. Daly, R. A. Cliff, and B. W. D. Yardley, Geol. Soc. London Spec. Publ. 43, 63–82 (1989).

  121. F. S. Spear, D. D. Hickmott, and J. Selverstone, “Metamorphic Consequences of Thrust Emplacement, Fall Mountain, New Hampshire,” Geol. Soc. Am. Bull. 102, 1344–1360 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Likhanov.

Additional information

Original Russian Text © I.I. Likhanov, V.V. Reverdatto, A.E. Vershinin, 2008, published in Geokhimiya, 2008, No. 1, pp. 20–41.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Likhanov, I.I., Reverdatto, V.V. & Vershinin, A.E. Fe- and Al-Rich metapelites of the Teiskaya Group, Yenisei Range: Geochemistry, protoliths, and the behavior of their material during metamorphism. Geochem. Int. 46, 17–36 (2008). https://doi.org/10.1134/S0016702908010023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702908010023

Keywords

Navigation