Skip to main content
Log in

Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solutions of varying acidity: Thermodynamic modeling at 400–800°C and 1–5 kbar

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The character of solubility of 61 metamorphic and metasomatic minerals in an aqueous fluid was analyzed as a function of temperature, pressure, and fluid acidity by means of computer simulation of mineralfluid equilibria. Depending on the behavior of minerals in solutions of varying acidity, six main types of solubility diagrams were distinguished. The solubility of the majority of minerals is controlled mainly by fluid acidity rather than by P–T conditions. The analysis of model results provided insight into the mobility of chemical elements composing the minerals. The highest mobility in solutions of any acidity was established for Si, K, and Na. Ca and Mg are mobile in acidic solutions and inert in neutral and alkaline solutions. Fe(II) and Mn(II) are mobile in acidic and alkaline solutions but inert in neutral solutions. Fe(III) is mobile only in strongly acidic solutions and practically immobile in solutions of other compositions, which suggests that ferrous iron species must prevail in solutions. Al is mobile in alkaline and ultra-acidic solutions but inert in neutral and slightly acidic solutions. Correspondingly, a change in acidity must lead to the migration of some component into the solution and precipitation of other components. These conclusions are in agreement with the sequences of element mobility deduced from the experimental investigation of metasomatism. Most metamorphic fluids must be rich in silica and alkalis, which may result in the appearance of aggressive silica-alkali fluids responsible for regional metasomatism and granitization. In general, the solubility of Fe-, Mg-, Mn-, and Ca-bearing minerals in alkaline solutions is low compared with acidic solutions. Therefore, only acidic initial solutions could produce fluids enriched in these elements at the expense of leaching from metamorphic rocks during fluid migration. Fluids enriched mainly in Fe could initially be both acidic and alkaline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. P. Eugster, “Minerals in Hot Water,” Am. Mineral. 71,(5–6) 655–673 (1986).

    Google Scholar 

  2. H. P. Eugster and W. D. Gunter, “The Compositions of Supercritical Metamorphic Solutions,” Bull. Mineral. 104(6), 817–826 (1981).

    Google Scholar 

  3. H. P. Eugster and L. Baumgartner, “Mineral Solubilities and Speciation in Supercritical Metamorphic Fluids,” in Thermodynamic Modeling of Geologic Materials: Minerals, Fluids and Melts, Ed. by I. S. E. Carmichael and H. P. Eugster, Rev. Mineral. 17, 367–403 (1987).

  4. J. M. Ferry and D. M. Burt, “Characterization of Metamorphic Fluid Composition through Mineral Equilibria,” in Characterization of Metamorphism through Mineral Equilibria, ed. by J. M. Ferry, Rev. Mineral. 10, 207–262 (1982).

  5. A. L. Skvirskii, S. A. Bushmin, A. S. Presnyak, and A. O. Petrochuk, “Thermodynamic Modeling of Interaction between Fluids and Minerals in Natural Multisystems,” Zap. Vseross. Mineral. O-va 122, 56–67 (1993).

    Google Scholar 

  6. A. L. Skvirski and S. A. Bushmin, “The Gibbs Free Energy Minimization Modeling Code for Computation of Fluid-Rock Equilibria in Geochemical Systems: ‘FLUID’ PC-Software Package,” in Models and Modeling of Geological Processes and Objects, Ed. by V. Glebovitsky (Theophrastus, St. Petersburg-Athens, 2000), pp. 182–185.

  7. D. V. Grichuk, Thermodynamic Models of Submarine Hydrothermal Systems (Nauchnyi mir, Moscow, 2000) [in Russian].

    Google Scholar 

  8. L. Haar, J. Gallagher, and G. Kell, “Thermodynamic Properties of Fluid Water,” in Proceedings of 9th International Conference on the Properties of Steam, (New York, Pergamon, 1980), pp. 69–82.

  9. J. C. Tanger IV and H. C. Helgeson, “Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Revised Equations of State for Standard Partial Molal Properties of Ions and Electrolytes,” Am. J. Sci. 288(1), 19–98 (1988).

    Article  Google Scholar 

  10. D. A. Sverjensky, “Calculation of the Thermodynamic Properties of Aqueous Species and the Solubilities of Minerals in Supercritical Electrolyte Solutions,” in Thermodynamic Modeling of Geologic Materials: Minerals, Fluids and Melts, Ed. by I. S. E. Carmichael and H. P. Eugster, Rev. Mineral. 17, 177–209 (1987).

  11. T. J. Holland and R. Powell, “An Internally-Consistent Thermodynamic Data Set for Phases of Petrological Interest,” J. Metamorph. Geol. 16(3), 309–343 (1998).

    Article  Google Scholar 

  12. M. V. Borisov and Yu. V. Shvarov, Thermodynamics of Geochemical Processes (Mosk. Gos. Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  13. GEOPIG (Group Exploring Organic Processes in Geochemistry): http://geopig.asu.edu/index.html

  14. V. A. Pokrovskii and H. C. Helgeson, “Thermodynamic Properties of Aqueous Species and the Solubilities of Minerals at High Pressures and Temperatures: The System Al2O3-H2O-NaCl,” Am. J. Sci. 295(10), 1255–1342 (1995).

    Article  Google Scholar 

  15. S. Salvi, G. S. Pokrovski, and J. Schott, “Experimental Investigation of Aluminium-Silica Aqueous Complexing at 300°C,” Chem. Geol. 151(1–4), 51–67 (1998).

    Article  Google Scholar 

  16. V. A. Pokrovskii, “Calculation of the Standard Partial Molal Thermodynamic Properties and Dissociation Constants of Aqueous HCl0 and HBr0 at Temperatures to 1000°C and Pressures to 5 kbar,” Geochim. Cosmochim. Acta 63(7–8), 1107–1115 (1999).

    Article  Google Scholar 

  17. V. A. Pokrovskii and H. C. Helgeson, “Calculation of the Standard Partial Molal Thermodynamic Properties of KCl° and Activity Coefficients of Aqueous KCl0 at Temperatures and Pressures to 1000°C and 5 kbar,” Geochim. Cosmochim. Acta 61(11), 2175–2183 (1997).

    Article  Google Scholar 

  18. N. I. Khitarov, “The 400°C Isotherm for the System H2O-SiO2 at Pressures up to 4000 kg/cm2,” Geokhimiya, No. 1, 62–66 (1956) [Geochem. Int. No. 1, 55–61 (1956).

  19. D. F. Weill and W. S. Fyfe, “The Solubility of Quartz in H2O in the Range 1000–4000 bars and 400–550°C,” Geochim. Cosmochim. Acta 28(8), 1243–1255 (1964).

    Article  Google Scholar 

  20. G. M. Anderson and C. W. Burnham, “The Solubility of Quartz in Supercritical Water,” Am. J. Sci. 263(6), 494–511 (1965).

    Article  Google Scholar 

  21. G. M. Anderson and C. W. Burnham, “Reactions of Quartz and Corundum with Aqueous Chloride and Hydroxide Solutions at High Temperatures and Pressures,” Am. J. Sci. 265(1), 12–27 (1967).

    Article  Google Scholar 

  22. R. A. Sommerfeld, “Quartz Solution Reaction: 400°–500°C, 1000 Bars,” J. Geophys. Res. 72(16), 4253–4257 (1967).

    Google Scholar 

  23. P. G. Novgorodov, “Solubility of Quartz in H2O-CO2 mixtures at 700°C and Pressures of 3 and 5 kbar,” Geokhimiya, No. 10, 1484–1489 (1975) [Geochem. Int. 12, 122–126 (1975)].

  24. P. G. Novgorodov, “On the Solubility of Quartz in Mixtures H2O + CO2 and H2O + NaCl at 700°C and 1.5 kbar Pressure,” Geokhimiya, No. 8, 1270–1273 (1977) [Geochem. Int. 14, 191–193 (1977)].

  25. J. J. Hemley, J. W. Montoya, J. W. Marinenko, and R. W. Luce, “Equilibria in the System Al2O3-SiO2-H2O and Some General Implications for Alteration/Mineralization Processes,” Econ. Geol. 75(2), 210–228 (1980).

    Article  Google Scholar 

  26. J. V. Walther and P. M. Orville, “The Extraction-Quench Technique for Determination of the Thermodynamic Properties of Solute Complexes: Application to Quartz Solubility in Fluid Mixtures,” Am. Mineral. 68(7–8), 731–741 (1983).

    Google Scholar 

  27. V. A. Sinitsyn and I. P. Ivanov, “Experimental Study of Aegirine Hydrolysis in NaOH Solutions,” Dokl. Akad. Nauk SSSR 275(5), 1172–1175 (1984).

    Google Scholar 

  28. S. W. Adcock, “The Solubility of Some Aluminosilicate Minerals in Supercritical Water—An Experimental and Thermodynamic Study,” Ph.D. dissertation (Carleton University, Carleton, 1985).

    Google Scholar 

  29. C. E. Manning, “The Solubility of Quartz in H2O in the Lower Crust and Upper Mantle,” Geochim. Cosmochim. Acta 58(22), 4831–4839 (1994).

    Article  Google Scholar 

  30. I. P. Ivanov and N. A. Tkachenko, “Analysis of Mineral Assemblages and Modeling of Zoning of Acidic Metasomatites,” in Experimental and Theoretical Modeling of Mineral Formation, Ed. by V. A. Zharikov and V. V. Fed’kin (Nauka, Moscow, 1998), pp. 173–188 [in Russian].

    Google Scholar 

  31. R. C. Newton and C. E. Manning, “Quartz solubility in H2O-NaCl and H2O-CO2 Solutions at Deep Crust-Upper Mantle Pressures and Temperatures: 2–15 kbar and 500–900°C,” Geochim. Cosmochim. Acta 64(17), 2993–3005 (2000).

    Article  Google Scholar 

  32. K. Shmulovich, C. Graham, and B. W. D. Yardley, “Quartz, Albite and Diopside Solubilities in H2O-NaCl and H2O-CO2 Fluids at 0.5–0.9 GPa,” Contrib. Mineral. Petrol. 141(1), 95–108 (2001).

    Article  Google Scholar 

  33. G. W. Morey, “The Solubility of Solids in Gases,” Econ. Geol. 52(3), 225–251 (1957).

    Google Scholar 

  34. I. G. Ganeev and V. N. Rumyantsev, “Solubility of Corundum in Water at High Temperatures and Pressures,” Geokhimiya, No. 9, 1402–1403 (1974).

  35. K. H. Becker, L. Cemič, and K. E. O. E. Langer, “Solubility of Corundum in Supercritical Water,” Geochim. Cosmochim. Acta 47(9), 1573–1578 (1983).

    Article  Google Scholar 

  36. K. V. Ragnarsdottir and J. V. Walther, “Experimental Determination of Corundum Solubilities in Pure Water between 400–700°C and 1–3 kbar,” Geochim. Cosmochim. Acta 49(10), 2109–2115 (1985).

    Article  Google Scholar 

  37. M. L. Pascal and G. M. Anderson, “Speciation of Al, Si, and K in Supercritical Solutions: Experimental Study and Interpretation,” Geochim. Cosmochim. Acta 53(8), 1843–1855 (1989).

    Article  Google Scholar 

  38. J. V. Walther, “Experimental Determination and Interpretation of the Solubility of Corundum in H2O between 350 and 600°C from 0.5 to 2.2 kbar,” Geochim. Cosmochim. Acta 61(23), 4955–4964 (1997).

    Article  Google Scholar 

  39. B. Tagirov and J. Schott “Aluminum Speciation in Crustal Fluids Revisited,” Geochim. Cosmochim. Acta 65(21), 3965–3992 (2001).

    Article  Google Scholar 

  40. E. L. Shock, D. C. Sassani, M. Willis, and D. A. Sverjensky, “Inorganic Species in Geologic Fluids: Correlations among Standard Molal Thermodynamic Properties of Aqueous Ions and Hydroxide Complexes,” Geochim. Cosmochim. Acta 61(5), 907–950 (1997).

    Article  Google Scholar 

  41. G. C. Brown and W. S. Fyfe, “Kyanite-Andalusite Equilibrium,” Contrib. Mineral. Petrol. 33(3), 227–231 (1971).

    Article  Google Scholar 

  42. A. F. Red’kin and T. K. Chevychelova, “Refinement of Some Mineral Equilibria and Compositions of Coexisting Solution in the System Al2O3-SiO2-H2O and 0.01 m HCl at 250–430°C and P = 1 kbar,” Och. Fiz.-Khim. Petrol. 17,(65–71) 1991.

    Google Scholar 

  43. G. T. Ostapenko and M. A. Arapova, “Solubility of Andalusite and Sillimanite in Water at 420–500°C and 1300 bar and Their Thermodynamic Constants,” Geokhimiya, No. 11, 1297–1303 (1971).

  44. G. T. Ostapenko, L. P. Timoshkova, and S. N. Tsymbal, “Gibbs Energy of Sillimanite from Data on Its Solubility in Water at 530°C and 1300 bar,” Zap. Vses. Mineral. O-va 106, 243–244 (1977).

    Google Scholar 

  45. G. W. Morey and J. M. Hesselgesser, “The Solubility of Some Minerals in Superheated Steam at High Pressures,” Econ. Geol. 46(8), 821–835 (1951).

    Google Scholar 

  46. C. J. Spengler and C. W. Burnham, “Compositions in the Upper Three Phase Region of the System KAlSi3O8-H2O at Pressures up to 6 Kilobars,” Geol. Soc. Amer. Spec. Pap., No. 68, 277 (1961).

  47. K. L. Currie, “On the Solubility of Albite in Supercritical Water in the Range 400 to 600°C,” Am. J. Sci. 266(5), 321–341 (1968).

    Article  Google Scholar 

  48. J. B. Adams, “Differential Solution of Plagioclase in Supercritical Water,” Am. Mineral. 53(9–10), 1603–1613 (1968).

    Google Scholar 

  49. G. M. Anderson and C. W. Burnham, “Feldspar Solubility and the Transport of Aluminium under Metamorphic Conditions,” Am. J. Sci. 283A, 283–297 (1983).

    Google Scholar 

  50. A. B. Woodland and J. V. Walther, “Experimental Determination of the Solubility of the Assemblage Paragonite, Albite, and Quartz in Supercritical H2O,” Geochim. Cosmochim. Acta 51(2), 365–372 (1987).

    Article  Google Scholar 

  51. G. M. Anderson, M. K. Pascal, and J. Rao, “Aluminium Speciation in Metamorphic Fluids,” in Chemical Transport in Metasomatic Processes, Ed. by H. C. Helgeson, NATO ASI Ser. C (Math. and Phys. Sci.) (D. Reidel Publ., Dordrecht, 1987), Vol. 218, pp. 297–321.

    Google Scholar 

  52. J. V. Walther and A. B. Woodland, “Experimental Determination and Interpretation of the Solubility of the Assemblage Microcline, Muscovite, and Quartz in Supercritical H2O,” Geochim. Cosmochim. Acta 57(11), 2431–2437 (1993).

    Article  Google Scholar 

  53. P. Ya. Azimov and A. G. Shtukenberg, “Simulation of Phase Diagrams for Water-Salt Systems with Solid Solutions,” Zh. Neorg. Khim. 45(8), 1424–1432 (2000) [Rus. J. Inorg. Chem. 45, 1302–1309 (2000).

    Google Scholar 

  54. J. V. Walther, “Experimental Determination of Portlandite and Brucite Solubilities in Supercritical H2O,” Geochim. Cosmochim. Acta 50, 733–739 (1986).

    Article  Google Scholar 

  55. J. J. Hemley, J. W. Montoya, C. L. Christ, and P. B. Hostetler, “Mineral Equilibria in the MgO-SiO2-H2O System: I. Talc-Chrysotile-Forsterite-Brucite Stability Relations,” Am. J. Sci. 277(3), 322–351 (1977).

    Article  Google Scholar 

  56. R. C. Newton and C. E. Manning, “Solubility of Enstatite + Forsterite in H2O at Deep Crust/Upper Mantle Conditions: 4 to 15 kbar and 700 to 900°C,” Geochim. Cosmochim. Acta 66(23), 4165–4176 (2002).

    Article  Google Scholar 

  57. O. Vidal and L. Durin, “Aluminium Mass Transfer and Diffusion in Water at 400–550°C, 2 kbar in the K2O-Al2O3-SiO2-H2O System Driven by a Thermal Gradient or by a Variation of Temperature with Time,” Mineral. Mag. 63(5), 633–647 (1999).

    Article  Google Scholar 

  58. D. A. Crerar, S. Wood, S. Brantley, and A. Bocarsky, “Chemical Controls on Solubility of Ore Forming Minerals in Hydrothermal Solutions,” Can. Mineral. 23, 333–352 (1985).

    Google Scholar 

  59. J. J. Hemley, G. L. Cygan, and W. M. D’Angelo, “Effect of Pressure on Mineral Solubilities under Hydrothermal Conditions,” Geology 14, 377–379 (1986).

    Article  Google Scholar 

  60. I.-M. Chou and H. P. Eugster, “Solubility of Magnetite in supercritical chloride solutions,” Am. J. Sci. 277(10), 1296–1314 (1977).

    Article  Google Scholar 

  61. N. Z. Boctor, R. K. Popp, and J. D. Frantz, “Mineral-Solution Equilibria. IV. Solubilities and the Thermodynamic Properties of FeCl 02 in the System Fe2O3-H2-H2O-HCl,” Geochim. Cosmochim. Acta 44(10), 1509–1518 (1980).

    Article  Google Scholar 

  62. G. P. Zaraiskii, “On the Differential Mobility of Components during Experimental Diffusion Metasomatism,” in Problems of Physicochemical Petrology (State of Fluid and Solutions, Metasomatism, Ore Formation (Nauka, Moscow, 1979), Vol. 2, pp. 118–144 [in Russian].

    Google Scholar 

  63. G. P. Zaraiskii, Zoning and Conditions of Metasomatic Rock Formation (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  64. V. K. Purtov, G. M. Yatluk, and V. N. Anfilogov, “Proportions of Fe, Mg, Si, and Al in Chloride Solutions at 873 K and 101 MPa in Relation to Skarn Formation in Limestones,” Dokl. Akad. Nauk SSSR 275(11), 1003–1006 (1984).

    Google Scholar 

  65. A. M. Dymkin, V. K. Purtov, and G. M. Yatluk, “On the Migration Properties of Iron in High-Temperature Hydrothermal Solutions,” Dokl. Akad. Nauk SSSR 274(1), 179–182 (1984).

    Google Scholar 

  66. V. K. Purtov and G. M. Yatluk, Geochemistry of Major Elements in Skarn-Forming Solutions (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  67. V. K. Purtov and G. M. Yatluk, “On the Mobilization of Iron and Magnesium by HCl and NaCl Solution from the Rocks and Rock-Forming Minerals at a Temperature of 600°C and a Pressure of 1000 kg/cm2,” Dokl. Akad. Nauk SSSR 262(5), 1242–1245 (1982).

    Google Scholar 

  68. E. H. Oelkers and H. C. Helgeson, “Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Aqueous Tracer Diffusion Coefficients of Ions to 1000°C and 5 kb,” Geochim. Cosmochim. Acta 52(11), 63–85 (1988).

    Article  Google Scholar 

  69. G. P. Zaraiskii, Yu. B. Shapovalov, V. N. Balashov, et al., “Experimental Study of Zoning and Formation Conditions of Ore-Bearing Metasomatites of the Acid Leaching Stage,” in Experiment and Solution of Important Geological Problems, Ed. by V. A. Zharikov and V. V. Fed’kin (Nauka, Moscow, 1986), pp. 250–278 [in Russian].

    Google Scholar 

  70. V. A. Glebovitskii and S. A. Bushmin, Post-Migmatite Metasomatism (Nauka, Leningrad, 1983) [in Russian].

    Google Scholar 

  71. S. A. Bushmin, “Mineral Facies of Metasomatites Related to Regional Metamorphism,” Zap. Vses. Mineral. O-va, 116, 585–601 (1987).

    Google Scholar 

  72. S. A. Bushmin, L. V. Kuleshevich, and V. V. Severin, “Metasomatic Facies in the Eastern Baltic Shield,” in Metamorphic Facies of the Eastern Baltic Shield (Nauka, Leningrad, 1990), pp. 87–118 [in Russian].

    Google Scholar 

  73. J. J. Wilkinson, J. Nolan, and A. H. Rankin, “Silicothermal Fluid: A Novel Medium for Mass Transport in the Lithosphere,” Geology 24(12), 1059–1062 (1996).

    Article  Google Scholar 

  74. V. A. Glebovitskii, T. F. Zinger, I. K. Kozakov, et al., Migmatization and Granite Formation under Different Thermodynamic Conditions (Nauka, Leningrad, 1985) [in Russian].

    Google Scholar 

  75. S. P. Korikovskii, “Evolution of Zoned Metamorphic Complexes at Prograde and Retrograde Stages,” in Characteristics of Metamagmatism, Metasomatism, and Metamorphism, Ed. by D. S. Korzhinskii, L. L. Perchuk, and N. N. Pertsev (Nauka, Moscow, 1987), pp. 160–188 [in Russian].

    Google Scholar 

  76. I. S. Sedova and V. A. Glebovitskii, “Features of Late Archean Granitization and Migmatization in the Belomorian Belt,” Zap. Vseross. Mineral. O-va 134, 1–24 (2005).

    Google Scholar 

  77. G. P. Zaraiskii, “The Conditions of the Nonequilibrium Silicification of Rocks and Quartz Vein Formation during Acidic Metasomatism,” Geol. Rudn. Mestorozhd 41, 294–307 (1999) [Geol. Ore Dep. 41 (4), 262–275 (1999)].

    Google Scholar 

  78. D. S. Korzhinskii, “An Outline of Metasomatic Processes,” in Fundamental Problems of Magmatic Ore Deposits (Akad. Nauk SSSR, Moscow, 1955), pp. 334–456 [in Russian].

    Google Scholar 

  79. N. G. Sudovikov, Regional Metamorphism and Some Petrological Problems (Leningr. Gos. Univ., Leningrad, 1964) [in Russian].

    Google Scholar 

  80. A. M. Larin, D. V. Rundqvist, and E. Yu. Rytsk, “Evolution Trends of Geodynamic Environments and the Duration of Mineral Deposits Formation,” in Geodynamics and Metallogeny: Theory and Implications for Applied Geology, Ed. by I. N. Mezhelovsky, A. F. Morozov, G. S. Gusev, and V. S. Popov (GEOKART, Moscow, 2000), pp. 193–212.

    Google Scholar 

  81. P. Kodera, A. H. Rankin, and J. Lexa, “Evolution of Fluids Responsible for Iron Skarn Mineralisation: An Example from the Vyhne-Klokoc Deposit, Western Carpathians, Slovakia,” Mineral. Petrol. 64(1–4), 119–147 (1998).

    Article  Google Scholar 

  82. N. N. Pertsev and A. L. Kulakovskii, Ferruginous Complex of the Central Aldan: Polymetamorphism and Structural Evolution (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  83. N. A. Eliseev, A. P. Nikol’skii, and V. G. Kushev, Metasomatites of the Kriovi Rog Ore Belt (Akad. Nauk SSSR, Moscow, 1961) [in Russian].

    Google Scholar 

  84. Yu. Ir. Polovinkina, “Sodium Metasomatism as a Regularity in the Formation of BIF Deposits,” Zap. Vses. Mineral. O-va 78, 52–58 (1949).

    Google Scholar 

  85. P. Ya. Azimov and A. G. Shtukenberg, “Thermodynamic Analysis of Factors Determining Growth Zoning in Metamorphic Garnets,” Dokl. Akad. Nauk 376(1), 235–237 (2001) [Dokl. Earth Sci. 376, 79–80 (2001)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ya. Azimov.

Additional information

Original Russian Text © P.Ya. Azimov, S.A. Bushmin, 2007, published in Geokhimiya, 2007, No. 12, pp. 1305–1330.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azimov, P.Y., Bushmin, S.A. Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solutions of varying acidity: Thermodynamic modeling at 400–800°C and 1–5 kbar. Geochem. Int. 45, 1210–1234 (2007). https://doi.org/10.1134/S0016702907120038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702907120038

Keywords

Navigation