Skip to main content
Log in

Genesis of positive Eu anomalies in acid rocks from the Eastern Baltic Shield

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The eastern part of the Baltic Shield contains an abundance of acid rocks with positive Eu anomalies. These rocks are vein granites and blastomylonites of similar chemical composition but with variable K2O concentrations. The rocks are depleted in Ti, Fe, Mg, Ca, Rb, Zr, and REE, but are enriched in Ba and Sr, a fact suggesting a deep-seated nature of the fluids that participated in the genesis of these rocks. A zone favorable for the derivation of these rocks was transitional from brittle to ductile deformations. The rocks were produced during the tectonic exhumation of lower and middle crustal material a horizontal extension. Shock decompression facilitated the inflow of reduced fluids, which, in turn, ensured the partial melting of the host rocks along open fractures and controlled REE fractionation with the development of Eu maxima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985; Mir, Moscow, 1988).

    Google Scholar 

  2. M. V. Mints, V. N. Glaznev, A. N. Konilov, et al., Early Precambrian of the Northeastern Baltic Shield: Paleogeodynamics, Structure and Evolution of the Continental Crust (Nauchnyi Mir, Moscow, 1996) [in Russian].

    Google Scholar 

  3. J. G. Arth, F. Barker, Z. E. Peterman, and J. Friedman, “Geochemistry of Gabbro-Diorite-Tonalite-Trondhjemite Suite of Southwest Finland and Its Implications for the Origin of Tonalitic and Trondhjemitic Magmas,” J. Petrol. 19, 289–316 (1978).

    Google Scholar 

  4. Yu. A. Kostitsin, “Accumulation of Trace Elements in Granites,” Priroda, No. 2, 26–34 (2000).

  5. L. B. Efremova and N. A. Sorokina, “REE Determination in Geological Samples by Atomic Emission Spectroscopy with Inductively Coupled Plasma after Ion-Exchange Extraction,” Zh. Anal. Khim. 46(11), 2259–2262 (1991).

    Google Scholar 

  6. K. Mehnert, Migmatites and the Origin of Granitic Rocks (Elsevier, Amsterdam, 1968; Mir, Moscow, 1971) [in Russian].

    Google Scholar 

  7. L. P. Nikitina, L. K. Levskii, K. I. Lokhov, et al., “Proterozoic Alkaline-Ultramafic Magmatism in the Eastern Part of the Baltic Shield,” Petrologiya 7(3), 252–275 (1999) [Petrology 7, 246 (1999)].

    Google Scholar 

  8. S. Sheppard, T. J. Griffin, I. M. Tyler, and R. W. Page, “High-and Low-K Granites and Adakites at a Paleoproterozoic Plate Boundary in Northwestern Australia,” J. Geol. Soc. (London) 158, 547–560 (2001).

    Google Scholar 

  9. N. M. Kunina and M. V. Mints, “Behavior of the Rare-Earth Elements during Granitization,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 67(4), 86–94 (1993).

    Google Scholar 

  10. N. E. Kozlov, A. A. Ivanov, and M. I. Nerovich, Lapland Granulite Belt: Primary Nature and Evolution (Geol. Inst. Kol. Fil. AN SSSR, Apatity, 1990) [in Russian].

    Google Scholar 

  11. P. D. Maniar and M. Piccoli, “Tectonic Discrimination of Granites,” Geol. Soc. Am. Bull. 101, 635–643 (1989).

    Article  Google Scholar 

  12. H. Martin, “Adakitic Magmas: Modern Analogues of Archaean Granitoids,” Lithos 46, 411–429 (1999).

    Article  Google Scholar 

  13. A. A. Beus, Geochemistry of the Lithosphere (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  14. A. Erlang, “Correlation between Potassium and Rubidium Contents in the Earth’s Rock,” in Origin and Distribution of the Elements (Pergamon, Oxford, New York, 1968; Mir, Moscow, 1972).

    Google Scholar 

  15. T. F. Shcherbakova, Amphibolites of the Belomorian Complex and Their Granitization (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  16. A. A. Beus and T. F. Shcherbakova, “Comparative Geochemical Characteristics of Amphibolite-Trondhjemite-Granite Series of the Baltic (Belomorian Complex) and Ukrainian (Dnepropetrovsk Complex) Shields,” Geokhimiya, No. 11, 1547–1567 (1994).

  17. V. A. Makrygina and Z. I. Petrova, “Geochemistry of Migmatites and Granitoids of Priol’khon’e and Ol’khon Island, Baikal Region,” Geokhimiya, No. 7, 637–649 (1996) [Geochem. Int. 34 (7), 574 (1996)].

  18. Z. I. Petrova, V. A. Makrygina, and V. A. Bobrov, “Rare-Earth Elements as Indicators of the Geodynamic Evolution in the Continental Block of Ol’khon Island and Adjacent Areas, Western Baikal Region,” Geokhimiya, No. 12, 1286–1297 (1999) [Geochem. Int. 37 (12), 1158 (1999)].

  19. Yu. A. Balashov and K. S. Tsoi, “Role of the Redox Conditions in Accumulation of Eu2+, Yb2+, and Sm2+ in Oils,” Dokl. Akad. Nauk SSSR 309(5), 1189–1192 (1989).

    Google Scholar 

  20. G. N. Baturin, J. Lucas, and L. Prévö-Lucas, “The Europeum Anomaly in Oceanic Phosphorites,” Dokl. Akad. Nauk 379(5), 647–650 (2001) [Dokl. 379A (6), 701 (2001)].

    Google Scholar 

  21. M. D. Norman, W. P. Leeman, and S. A. Mertzmam, “Granites and Rhyolites from the Northwestern U.S.A.: Temporal Variation in Magmatic Processes and Relations to Tectonic Setting,” Trans. R. Soc. Edinburgh, Earth Sci. 83, 71–81 (1992).

    Google Scholar 

  22. V. I. Levitskii, “Classification of Metasomatites of the Precambrian Continental Crust,” Zap. Vseross. Mineral. O-va 127(2), 26–40 (1998).

    Google Scholar 

  23. C. F. Miller and D. W. Mittlefehdt, “Depletion of Light Rare-Earth Elements in Felsic Magmas,” Geology 10(3), 129–133 (1982).

    Article  Google Scholar 

  24. J. Arth, “Some Trace Elements in Trondhjemites—Their Implication to Magma Genesis and Paleotectonic Setting,” in Trondhjemites, Dacites and Related Rocks, Ed. by F. Barker, (Elsevier, Amsterdam, 1979; Mir, Moscow, 1983).

    Google Scholar 

  25. R. B. Pedersen and J. Malpas, “The Origin of Oceanic Plagiogranites from the Karmoy Ophiolite, Western Norway,” Contrib. Mineral. Petrol. 88, 36–52 (1984).

    Article  Google Scholar 

  26. A. Danielson, P. Moller, and P. Dulski, “The Europium Anomalies in Banded Iron Formation and the Thermal History of the Oceanic Crust,” Chem. Geol. 97, 89–100 (1992).

    Article  Google Scholar 

  27. B. J. Williamson, H. Downes, and F. M. Trirlwall, “The Relationship Between Crustal Magmatic Underplating and Granite Genesis: An Example from the Velay Granite Complex, Massif Central, France,” Earth Sci., No. 83, 235–245 (1992).

    Google Scholar 

  28. S. N. Ivanov and A. I. Rusin, “Continental Rift Magmatism,” Geotektonika, No. 1, 6–19 (1997) [Geotectonics 31 (1), 3 (1997)].

  29. K. Hodges, S. Bowring, K. Davidek, et al., “Evidence for Rapid Displacement on Himalayan Normal Faults and the Importance of Tectonic Denudation in the Evolution of Mountain Ranges,” Geology 26(6), 483–486 (1998).

    Article  Google Scholar 

  30. J. F. Dewey, “Extensional Collapse of Orogens,” Tectonics 7(6), 1123–1139 (1988).

    Article  Google Scholar 

  31. B. Wernicke, J. D. Walker, and M. S. Beaufait, “Structural Discordance between Neogene Detachments and Frontal Sevier Thrusts, South Nevada,” Tectonics, No. 2, 112–132 (1985).

  32. D. McKenzie and M. J. Bickle, “The Volume and Composition of Melt Generated by Extension of the Lithosphere,” J. Petrol., No. 29, 625–679 (1988).

    Google Scholar 

  33. F. A. Letnikov, “Fluid Regime of Endogenous Processes in the Continental Lithosphere and Problems of Metallogeny,” in Proceedings of Theoretical Seminar OGGGGN RAN on Problems of Global Geodynamics, Moscow, 1998–1999 (GEOS, Moscow, 2000), pp. 204–224 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.N. Terekhov, T.F. Shcherbakova, 2006, published in Geokhimiya, 2006, No. 5, pp. 483–500.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terekhov, E.N., Shcherbakova, T.F. Genesis of positive Eu anomalies in acid rocks from the Eastern Baltic Shield. Geochem. Int. 44, 439–455 (2006). https://doi.org/10.1134/S0016702906050028

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702906050028

Keywords

Navigation