Skip to main content
Log in

Solar modulation of galactic cosmic rays in the three-dimensional heliosphere according to meteorite data

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Cosmogenic radionuclides with distinctive half-lives from chondritic falls were used as natural detectors of galactic cosmic rays (GCR). A unique series of uniform data was obtained for variations in the integral gradients of GCR with a rigidity of R > 0.5 GV in 1955–2000 on heliocentric distances of 1.5–3.3 AU and heliographic latitudes between 23° S and 16° N. Correlation analysis was performed for the variations in GCR gradients and variations in solar activity (number of sunspots, SS, and intensity of the green coronal line, GCL), the intensity of the interplanetary magnetic field (IMF), and the inclination of the heliospheric current sheet (HCS). Distribution and variations of GCR were analyzed in 11-year solar cycles and during a change in 22-year magnetic cycles. The detected dependencies of GCR gradients on the intensity of IMF and HCS inclination provided insight into the differences in the processes of structural transformation of IMF during changes between various phases of solar and magnetic cycles. The investigated relationships lead to the conclusion that a change of secular solar cycles occurred during solar cycle 20; moreover, there is probably still an increase in the 600-year solar cycle, which can be among the major reasons for the observed global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.sunspot.net/cat3sun_r.html

  2. G. A. Bazilevskaya, M. B. Krainev, Yu. I. Stozhkov, et al., “Long-Term Soviet Program for the Measurement of Ionizing Radiation in the Atmosphere,” J. Geomagn. Geoelectr. 43, 893–900 (1991).

    Google Scholar 

  3. F. McDonald, H. Moraal, J. P. L. Reinecke, et al., “The Cosmic Radiation in the Heliosphere at Successive Solar Minima,” J. Geophys. Res. 97, 1557–1570 (1992).

    Article  Google Scholar 

  4. D. Venkatesan, R. B. Decker, and S. M. Krimigis, “Cosmic Ray Intensity Gradients in the Radial Distance 1–13 AU as Determined from a Comparative Study of Observations by Spacecrafts ‘Voyagers-1 and-2,’ and Earth-Orbiting Satellite IMP-8,” in Proceedings of 18th International Cosmic Ray Conference, Bangalore, India, 1983 (Bangalore, 1983), Vol. 10, pp. 156–159.

    Google Scholar 

  5. A. V. Belov, E. A. Eroshenko, B. Heber, et al., “Latitudinal and Radial Variation of >2 GeV/N Protons and α-Particles in the Southern Heliosphere at Solar Maximum: ULYSSES COSPIN/KET and Neutron Monitor Network Observations,” in Proceedings of 27th International Cosmic Ray Conference, Hamburg, 2001 (Hamburg, 2001), pp. 3996–3999.

  6. F. McDonald, Z. Fujii, P. Ferrando, et al., “The Cosmic Ray Radial and Latitudinal Intensity Gradients in the Inner and Outer Heliosphere 1996–2001.3,” in Proceedings of 27th International Cosmic Ray Conference, Hamburg, Germany, 2001 (Hamburg, 2001), pp. 3906–3909.

  7. E. N. Parker, Interplanetary Dynamical Processes (Interscience, New York, 1963; Mir, Moscow, 1965).

    Google Scholar 

  8. L. I. Dorman, Variations in Galactic Cosmic Rays (Mosk. Gos. Univ., Moscow, 1975) [in Russian].

    Google Scholar 

  9. J. R. Jokipii, E. H. Levy, and W. B. Hubbard, “Effects of Particle Drifts on Cosmic Ray Transport. 1. General Properties, Application to Solar Modulation,” Astrophys. J. 213, 861–868 (1977).

    Article  Google Scholar 

  10. G. A. Bazilevskaya, Yu. I. Stozhkov, and T. N. Charakhch’yan, “Variations in Cosmic Ray Intensity in the Stratosphere,” in Problems of the Physics of Cosmic Rays (Nauka, Moscow, 1987), pp. 51–64 [in Russian].

    Google Scholar 

  11. ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA

  12. A. K. Lavrukhina, G. K. Ustinova, M. V. Alaniya, and L. I. Dorman, “Temporal, Radial, and Latitudinal Variations of GCR in the Solar System,” Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 547–552 (1981).

    Google Scholar 

  13. A. K. Lavrukhina, G. K. Ustinova, M. V. Alania, and L. I. Dorman, “Temporal, Radial, and Latitudinal Variations of Galactic Cosmic Ray Gradients in the Solar System,” in Proceedings of 17th International Cosmic Ray Conference, Paris, France, 1981 (Paris, 1981), Vol. 3, pp. 238–241.

    Google Scholar 

  14. M. V. Alania, L. I. Dorman, A. K. Lavrukhina, and G. K. Ustinova, “GCR Variations in the Heliosphere According to Radioactivity of Meteorites,” in Proceedings of 18th International Cosmic Ray Conference, Bangalore, India, 1983 (Bangalore, 1983), Vol. 10, pp. 42–45.

    Google Scholar 

  15. A. K. Lavrukhina and G. K. Ustinova, Meteorites as Probes of Cosmic Ray Variations (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  16. G. P. Lyubimov and N. V. Pereslegina, “Gradient of Cosmic Rays and Solar Activity” in Cosmic Rays (Nauka, Moscow, 1983), No. 22, pp. 97–104 [in Russian].

    Google Scholar 

  17. S. N. Vernov, A. N. Charakhch’yan, Yu. I. Stozhkov, and T. N. Charakhch’yan, Preprint No. 107, FIAN RAN (Fiz. Inst. Akad. Nauk, Moscow, 1974) [in Russian].

  18. G. K. Ustinova, “Cosmic Rays in the Heliosphere and Cosmogenic Nuclides,” Nucl. Geophys. 9, 273–281 (1995).

    Google Scholar 

  19. G. K. Ustinova and A. K. Lavrukhina, “Cosmic Ray Variations in the Heliosphere Based on the Results of a Study of Extraterrestrial Materials,” Geokhimiya, No. 4, 483–501 (1983).

  20. V. A. Alexeev and G. K. Ustinova, “Characteristics of Galactic Cosmic Ray Modulation in 1954–1922 According to Meteorite Data,” Izv. Akad. Nauk, Ser. Fiz. 63, 1625–1629 (1999).

    Google Scholar 

  21. V. A. Alexeev, V. D. Gorin, and G. K. Ustinova, “Distribution and Variations of Galactic Cosmic Rays in the Heliosphere According to Meteorite Data,” Dokl. Akad. Nauk 394, 328–331 (2004).

    Google Scholar 

  22. L. Z. Rumshiskii, Mathematical Processing of Experimental Results (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  23. R. B. McKibben, J. J. O’Gallagher, K. R. Pyle, and J. A. Simpson, “Cosmic Ray Intensity Gradients in the Outer Solar System Measured by Pioneer 10 and 11,” in Proceedings of 15th International Cosmic Ray Conference, Plovdiv, Bulgaria, 1977 (Plovdiv, 2001), Vol. 3, pp. 240–245.

    Google Scholar 

  24. A. K. Lavrukhina and G. K. Ustinova, “Determination of the Boundaries of a Modulation Region,” Izv. Akad. Nauk SSSR, Ser. Fiz. 34, 2401–2407 (1970).

    Google Scholar 

  25. A. K. Lavrukhina and G. K. Ustinova, “Gradient Variations of Cosmic Rays during the Solar Activity Cycle,” Geomagn. Aeron. 12, 744–746 (1972).

    Google Scholar 

  26. D. Venkatesan, R. B. Decker, and S. M. Krimigis, “Cosmic Ray Intensity Gradients during 1984–1986,” in Proceedings of 20th International Cosmic Ray Conference, Moscow, Russia, 1987 (Moscow, 1987), Vol. 3, pp. 385–388.

    Google Scholar 

  27. L. F. Burlaga, “Understanding the Heliosphere and Its Energetic Particles,” in Proceedings of 18th International Cosmic Ray Conference, Bangalore, India, 1983 (Bangalore, 1983), Vol. 12, pp. 21–60.

    Google Scholar 

  28. C. J. Hatton and G. A. Bowe, “An Empirical Model for the 11-Year Variation,” in Proceedings of 17th International Cosmic Ray Conference, Paris, France, 1981 (Paris, 1981), Vol. 3, pp. 255–258.

    Google Scholar 

  29. M. S. Potgieter and J. A. le Roux, “On a Possible Modulation Barrier in the Outer Heliosphere,” in Proceedings of 20th International Cosmic Ray Conference, Moscow, Russia, 1987 (Moscow, 1987), Vol. 3, pp. 291–294.

    Google Scholar 

  30. L. F. Burlaga and N. F. Ness, “Magnetic Field Strength Distributions and Spectra in the Heliosphere and Their Significance for Cosmic Ray Modulation: Voyager 1, 1980–1994,” J. Geophys. Res. 103, 29719–29732 (1998).

    Article  Google Scholar 

  31. A. K. Lavrukhina and G. K. Ustinova, “Galactic Cosmic Ray Gradients in the Ecliptic Plane and at High Latitudes during Two Solar Cycles (Meteorite Data),” Adv. Space Res. 1(3), 143–146 (1981).

    Article  Google Scholar 

  32. H. S. Ahluwalia and I. V. Escobar, “The Cosmic Ray Intensity Variations and the Electromagnetic States of the Interplanetary Space,” Geophys. Intern. 3(2), 21–41 (1963).

    Google Scholar 

  33. Yu. I. Stozhkov, “Cosmic Ray Flux and Solar Magnetic Flow,” Izv. Akad. Nauk, Ser. Fiz. 67, 499–501 (2003).

    Google Scholar 

  34. R. Howard, “Studies of Solar Magnetic Fields,” Solar Phys. 38, 283–299 (1974).

    Article  Google Scholar 

  35. M. B. Krainev, “Influence of the Total Solar Magnetic Field on an 11-year Cycle and ‘Anomalous’ Phenomena in Galactic Cosmic Rays,” Izv. Akad. Nauk SSSR, Ser. Fiz. 47, 1754–1760 (1983).

    Google Scholar 

  36. I. N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (Nauka, Moscow, 1983; Reidel, Dordrecht, 1985).

    Google Scholar 

  37. http://quake.stanford.edu/:_wso/Polar.ascii

  38. V. I. Makarov and K. R. Sivaraman, “New Results Concerning the Global Solar Cycle,” Solar Phys. 123, 367–380 (1989).

    Article  Google Scholar 

  39. Yu. I. Vitinskii, Solar Activity (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  40. N. K. Pereyaslova, M. N. Nazarova, and I. E. Petrenko, “Solar Proton Events in the Near-Earth Space on the Growth Phase of a 23-Year Cycle of Solar Activity,” Izv. Akad. Nauk, Ser. Fiz. 63, 1579–1584 (1999).

    Google Scholar 

  41. Yu. I. Stozhkov, N. S. Svirzhevskii, and A. K. Svirzhevskaya, “Features of Long-Term Cosmic Ray Variations According to Atmospheric Measurements,” Izv. Akad. Nauk, Ser. Fiz. 67, 502–504 (2003).

    Google Scholar 

  42. G. K. Ustinova and A. K. Lavrukhina, “Latitude Gradients of Galactic Cosmic Rays from Radioactivity of Chondrites Including Pribram, Lost City and Innisfree,” Meteoritics 14, 554–559 (1979).

    Google Scholar 

  43. G. K. Ustinova, “Quasistationary Asymmetry of the GCR Density Distribution in the Heliosphere,” in Proceedings of 18th International Cosmic Ray Conference, Bangalore, India, 1983 (Bangalore, 1983), Vol. 10, pp. 71–74.

    Google Scholar 

  44. F. C. Jones, “Rapporteur Paper for Sessions MG1, MG3, and MG4. Modulation Theory, Interplanetary Propagation, and Interplanetary Acceleration,” in Proceedings of 18th International Cosmic Ray Conference, Bangalore, India, 1983 (Bangalore, 1983), Vol. 12, pp. 373–388.

    Google Scholar 

  45. http://nssdc.gsfc.nasa.gov/omniweb/form/dx1.html

  46. http://quake.stanford.edu/:_wso/wso.html

  47. H. S. Ahluwalia, “Understanding Cosmic Ray Solar Modulation for Cycle 20,” in Proceedings of 28th International Cosmic Ray Conference, Tzukuba, Japan 2003 (Tzukuba, 2003), pp. 4035–4040.

  48. B. M. Rubashev, Problems of Solar Activity (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  49. Yu. I. Vitinskii, M. Kopetskii, and G. V. Kuklin, Statistics of Spot-Forming Solar Activity (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  50. M. Waldmeier, “Der lange Sonnenzyklus,” Zeitschr. Astrophys. 43(2), 149–160 (1957).

    Google Scholar 

  51. Ya. B. Zel’dovich and A. A. Ruzmaikin, “Problems of a Dynamo in Astrophysics,” Itogi Nauki Tekhn., Ser. Astron. 21, 151–187 (1982).

    Google Scholar 

  52. http://www.clearlight.com/:_mhieb/WVFossils/last_200_yrs.html

  53. http://www.clearlight.com/:_mhieb/WVFossils/temp_vs_CO2.html

  54. V. A. Granovskii and T. N. Siraya, Methods of Experimental Data Processing during Measurements (Energoatomizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © VA. Alexeev, G.K. Ustinova, 2006, published in Geokhimiya, 2006, No. 5, pp. 467–482.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexeev, V.A., Ustinova, G.K. Solar modulation of galactic cosmic rays in the three-dimensional heliosphere according to meteorite data. Geochem. Int. 44, 423–438 (2006). https://doi.org/10.1134/S0016702906050016

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702906050016

Keywords

Navigation