Skip to main content
Log in

Chrome-bearing mineral phases in the carbonatites of northern Transbaikalia

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

This paper presents the results of a study of the Vesely carbonatite occurrence in a new carbonatite-bearing area of northern Transbaikalia. The REE patterns, oxygen and carbon isotope compositions of carbonates and magnetites, and strontium isotope composition of dolomite allow us to classify the rocks as carbonatites. This study focused on minerals from xenoliths that were identified as mantle-derived on the basis of structure and mineral composition. The compositions of Cr-bearing chlorite, phengite, magnetite, rutile, ilmenite, and titanite are reported. Aggregates of closely intergrown magnetite and rutile occurring in the xenoliths resemble exsolution structures. A possible origin of these aggregates is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. R. Frost and D. H. Lindsley, “Occurrence of Iron-Titanium Oxides in Igneous Rocks,” in Oxide Minerals: Petrologic and Magnetic Significance, Rev. Mineral. 25, 433–468 (1991).

    Google Scholar 

  2. Yu. A. Bagdasarov, “Geochemical Features of Magnetites from Carbonatites and Other Rocks of the Chernigov Zone, Azov Region,” Dokl. Akad. Nauk SSSR 252, 208–212 (1982).

    Google Scholar 

  3. Yu. A. Bagdasarov, “Chromium Geochemistry in the Rocks of Carbonatite Complexes,” Geol. Rudn. Mestorozhd, No. 36, 85–89 (1981).

  4. S. A. Gallii, V. M. Krochuk, and S. A. Kozak, “Genetic Features of Magnetite from Carbonatites of the Ukrainian Shield,” Mineral. Zh. 4(2), 85–89 (1982).

    Google Scholar 

  5. S. Massone and W. Schreyer, “Stability Field of the High-Pressure Assemblage talc-phengite and Two New Phengite Barometers,” Aur. J. Mineral. 1, 391–410 (1989).

    Google Scholar 

  6. A. R. Woolley and R. C. Kemp, “Carbonatites: Nomenclature, Average Chemical Composition, and Element Distribution,” in Carbonatites: Genesis and Evolution (Unwin Hyman, London, 1989), pp. 1–14.

    Google Scholar 

  7. D. K. Bailey, “Carbonatite Magmas,” J. Geol. Soc. (London) 150, 637–651 (1993).

    Google Scholar 

  8. Yu. A. Bagdasarov and I. P. Ilunin, “Coexisting Ilmenites and Ti-Magnetites in a Kimberlite Matrix,” Dokl. Akad. Nauk SSSR 290, 945–948 (1986).

    Google Scholar 

  9. V. I. Gerasimovskii and A. I. Polyakov, “Geochemistry of the Volcanic Rocks of the East African Rift Zones,” in East African Rift System (Nauka, Moscow, 1964), Vol. 3, pp. 5–194 [in Russian].

    Google Scholar 

  10. A. R. Woolley and A. A. Church, “Carbonatite Petrogenesis Evidence from the Known Occurrences of Extrusive Carbonatite,” in Proceedings of 32th International Geological Congress, Rio de Janeiro, Brazil, 2000 (Rio de Janeiro, 2000), G0605004.

  11. A. P. Jones, T. Kostola, F. Stoppa, and A. R. Woolley, “Petrography and Mineral Chemistry of Mantle Xenoliths in a Carbonate-Rich Melilitic Tuff from Mt. Vulture Volcano, Southern Italy,” Mineral. Mag. 64, 593–613 (2000).

    Google Scholar 

  12. E. R. Neuman, E. Wulff-Pedersen, N. J. Pearson, and E. A. Spenser, “Mantle Xenoliths from Tenerife (Canary Islands): Evidence for Reactions between Mantle Peridotites and Silicic Carbonatite Melts Including Ca Metasomatism,” J. Petrol. 43, 825–857 (2002).

    Google Scholar 

  13. A. R. Woolley, W. C. Barr, V. K. Din, et al., “Extrusive Carbonatites from the Uyaynah Area, United Arab Emirates,” J. Petrol. 32, 1143–1167 (1991).

    Google Scholar 

  14. Yu. A. Bagdasarov, “Typochemistry of Magnetites from Carbonatites of Different Formational Types and Depth Facies,” in Proceedings of 4th All-Union Mineralogical Seminar, Dushanbe, USSR, 1986 (Dushanbe, 1986), pp. 223–224 [in Russian].

  15. S. E. Haggerty, “Oxide Mineralogy of the Upper Mantle,” in Oxide Minerals: Petrologic and Magnetic Significance, Rev. Mineral. 25, 355–416 (1991).

    Google Scholar 

  16. N. L. Dobretsov and A. V. Tatarinov, Jadeite and Nephrite in Ophiolites (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  17. N. L. Dobretsov, N. V. Sobolev, V. S. Shatskii, et al., Eclogites and Glaucophane Schists in Fold Areas (Nauka, Novosibirsk, 1989) [in Russian].

    Google Scholar 

  18. D. H. Lindsley, “Experimental Studies of Oxide Minerals,” in Oxide Minerals: Petrologic and Magnetic Significance, Rev. Mineral. 25, 69–106 (1991).

    Google Scholar 

  19. M. J. Powncely and M. J. Fisher-White, “Phase Equlibria in the Systems Fe2O3-MgO-TiO2 and FeO-MgO-TiO2 between 1173 and 1473 K, and Fe2+-Mg Mixing Properties of Ilmenite, Ferrous-Pseudobrookite and Ulvospinel Solid Solutions,” Contrib. Mineral. petrol. 135, 198–211 (1999).

    Google Scholar 

  20. S. Akimoto, T. Nagata, and T. Katsura, “The FiFe2O5-Ti2FeO5 Solid Solution Series,” Nature 179, 37–38 (1957).

    Google Scholar 

  21. D. H. Lindsley, “Iron-Titanium Oxides,” Carnegie Inst. Washington Yearbook, No. 64, 144–148 (1965).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.S. Ripp, N.S. Karmanov, A.G. Doroshkevich, M.V. Badmatsyrenov, I.A. Izbrodin, 2006, published in Geokhimiya, 2006, No. 4, pp. 437–444.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ripp, G.S., Karmanov, N.S., Doroshkevich, A.G. et al. Chrome-bearing mineral phases in the carbonatites of northern Transbaikalia. Geochem. Int. 44, 395–402 (2006). https://doi.org/10.1134/S0016702906040069

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702906040069

Keywords

Navigation