Skip to main content
Log in

Cycles of alkaline magmatism

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Geochronological data (∼1800 dates) have been analyzed by the probabilistic statistical analysis of samplings of different subalkaline and alkaline rocks through the whole of geological time. The distribution of five groups of subalkaline and alkaline rocks within the Late Archean-Phanerozoic are strictly controlled by mantle cycles, which were distinguished from data on the upper mantle magmatic rocks. Since high alkali rocks are plume related, their universal participation in each of the revealed mantle cycles emphasizes the importance of this magmatism in the evolution of the crustal-mantle system. The initial Sr and Nd isotope ratios are subdivided into two groups: with mantle and crustal signatures. Mantle isotope ratios are typically observed throughout the entire geological interval of dated rocks, while the role of crustal isotope signatures increases from the Archean to Phanerozoic, reflecting the increasing the role of fluids and crustal rocks in the magmatic processes during the generation of mantle magmas and their consolidation in the crust. Since alkaline magmatic sources are formed during mantle metasomatism, which enriched the magma generation zones in incompatible elements, the repeated occurrence of this process in separate mantle zones may have lead to the anomalous accumulation of these elements, which should be reflected in the alkaline magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Kogarko, “Alkaline Magmatism in the Early History of the Earth,” Petrologiya 6(3), 251–258 (1998) [Petrology 6 (3), 230–236 (1998)].

    Google Scholar 

  2. L. N. Kogarko and V. E. Khain, “Alkaline Magmatism in the Earth’s History: A Geodynamic Interpretation,” Dokl. Akad. Nauk 37(5), 679–688 (2001) [Dokl. Earth Sci. 377A (3), 359–361 (2001)].

    Google Scholar 

  3. K. C. Condie, “Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection,” Earth Planet. Sci. Lett. 163, 97–108 (1998).

    Article  Google Scholar 

  4. R. E. Ernst, K. L. Buchan, T. D. West, and H. C. Palmer, “Diabase (Dolerite) Dyke Swarms of the World: First Edition,” Geol. Surv. Can. Open File, No. 3241 (1996).

  5. L. B. Yale and S. J. Carpenter, “Large Igneous Provinces and Giant Dike Swarms: Proxies for Supercontinent Cyclicity and Mantle Convection,” Earth Planet. Sci. Lett. 163, 109–122 (1998).

    Article  Google Scholar 

  6. Yu. A. Balashov and V. N. Glaznev, “The Impact of Plume Magmatism on the Dynamics of Precambrian Crust Formation,” Dokl. Akad. Nauk 395(2), 78–81 (2004) [Dokl. Earth Sci. 395 (2), 170–173 (2004)].

    Google Scholar 

  7. A. Streckeisen, “Classification and Nomenclature of Volcanic Rocks, Lamprophyres, Carbonatites, and Metilitic Rocks: Recommendations and Suggestions of the IUGS Subcommission on the Systematics of Igneous Rocks,” Geology 7, 331–335 (1979).

    Google Scholar 

  8. A Classification of Igneous Rocks and Glossary of Terms, Ed. by S. V. Efremova (Nedra, Moscow, 1997) [in Russian].

    Google Scholar 

  9. L. N. Kogarko, G. Kurat, and T. Ntaflos, “Carbonate Metasomatism of the Oceanic Mantle beneath Fernando de Noronha Island, Brazil,” Contrib. Mineral. Petrol. 140, 577–587 (2001).

    Google Scholar 

  10. V. Courtillot, A. Davaille, J. Besse, and J. Stock, “Three Distinct Types of Hotspots in the Earth’s Mantle,” Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Article  Google Scholar 

  11. S. R. Hart, E. H. Hauri, L. A. Oschmann, and J. A. Whitehead, “Mantle Plumes and Entrainment: Isotopic Evidence,” Science 256, 517–520 (1992).

    Google Scholar 

  12. F. Corfu, S. L. Jackson, and R. H. Sutcliffe, “U-Pb Ages and Tectonic Significance of Late Archean Alkalic Magmatism and Nonmarine Sedimentation: Timiskaming Group, Southern Abitibi Belt, Ontario,” Can. J. Earth Sci. 28, 489–503 (1991).

    Google Scholar 

  13. G. R. Tilton and K. Bell, “Sr-Nd-Pb Isotope Relationships in Late Archean Carbonatites and Alkaline Complexes: Applications to the Geochemical Evolution of Archean Mantle,” Geochim. Cosmochim. Acta 58(15), 3145–3154 (1994).

    Article  Google Scholar 

  14. A. A. Arzamastsev, F. Bea, L. V. Arzamastseva, and P. Montero, “Paleozoic Plume-Lithosphere Interaction in the Northeast Baltic Shield: REE in Rocks and Minerals of Kola Intrusions as Indicators of Alkaline Melt Evolution,” in Proceedings of the II International Seminar “Deep Magmatism, Magmatic Sources, and Plume Problems (Irkutsk, 2002), pp. 54–86 [in Russian].

  15. S. P. Turner, D. W. Peate, C. J. Hawkesworth, and M. S. M. Mantovani, “Chemical Stratigraphy of the Parana Basalt Succession in Western Uruguay: Further Evidence for the Diachronous Nature of the Parana Magma Types,” J. Geodynamics 28, 459–469 (1999).

    Google Scholar 

  16. A. R. Basu, P. R. Renne, D. K. Gupta, et al., “Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Decan Flood Basalts,” Science 261, 902–906 (1993).

    Google Scholar 

  17. I. N. Tolstikhin, I. L. Kamensky, B. Marty, et al., “Rare Gas Isotopes and Parent Elements in Ultrabasic-Alkaline Carbonatite Complexes, Kola Peninsula: Identification of Lower Mantle Plume Component,” Geochim. Cosmochim. Acta 66(5), 881–901 (2002).

    Article  Google Scholar 

  18. A. D. Brandon, M. D. Norman, R. J. Walker, and J. W. Morgan, “186Os-187Os Systematics of Hawaiian Picrites,” Earth Planet. Sci. Lett. 174, 25–42 (1999).

    Article  Google Scholar 

  19. U. Schärer, F. Corfu, and D. Demaiffe, “U-Pb and Lu-Hf Isotopes in Baddeleyite and Zircon Megacrysts from the Mbuji-Mayi Kimberlite: Constraints on the Subcontinental Mantle,” Chem. Geol. 143(1–2), 1–16 (1997).

    Google Scholar 

  20. L. Kerschhofer, U. Schärer, and A. Deutsch, “Evidence for Crystals from the Lower Mantle: Baddeleyite Megacrysts of the Mbuji-Mayi Kimberlite,” Earth Planet. Sci. Lett. 179(2), 219–225 (2000).

    Article  Google Scholar 

  21. Yu. A. Balashov and V. N. Glaznev, “Endrogenic Cycles in the Crust-Forming Problem,” Geokhimiya 44(2), 1–12 (2006) [Geochem. Int. 44 (2), 109–117].

    Google Scholar 

  22. J. Blichert-Toft, N. T. Arndt, and J. N. Luden, “Precambrian Alkaline Magmatism,” Lithos 37(1), 97–111 (1996).

    Google Scholar 

  23. S. K. Simakov, “The Clinopyroxene Barometry of Mantle Peridotites: Implication for Diamond Evaluation Potential,” Dokl. Akad. Nauk 376(6), 801–803 (2001) [Dokl. Earth Sci. 377 (2), 201–203 (2001)].

    Google Scholar 

  24. H. L. Allsopp, J. W. Bristow, C. B. Smith, et al., “A Summary of Radiometric Dating Methods Applicable to Kimberlites and Related Rocks,” in Kimberlites and Related Rocks: 1. Their Composition Occurrence, Origin, and Emplacement, Ed. by J. Ross, A. L. Jaques, et al., Geol. Soc. Austral. Spec. Publ., No. 14, 343–368 (1986).

  25. P. D. Kinny, B. J. Griffin, L. M. Heaman, et al., “SHRIMP U-Pb Ages of Perovskite from Yakutian Kimberlites,” Russ. Geol. Geophys. 38(1), 97–105 (1997).

    Google Scholar 

  26. D. R. Nelson, A. F. Trendall, and W. Altermann, “Chronological Correlations between the Pilbara and Kaapvaal Cratons,” Precambrian Res. 97, 165–189 (1999).

    Article  Google Scholar 

  27. S. L. Kamo and D. W. Davis, “Reassessment of Archean Crust Development in the Barberton Mountain Land, South Africa, Based on U-Pb Dating,” Tectonics 13(1), 167–192 (1994).

    Article  Google Scholar 

  28. E. V. Tabuns, E. B. Sal’nikova, V. P. Kovach, et al., “Late Archean Age of Ultrapotassium Rocks in the Ukduska Massif, Aldan Shield: Evidence from U-Pb Studies of Single Zircon Grains,” in Proceedings of the II Russian Conference on Isotopic Geochronology (St. Petersburg, 2003), pp. 492–494 [in Russian].

  29. G. B. Kiviets and D. Phillips, “40Ar/39Ar Laser Probe Analyses of K-bearing Titanates from Kimberlites,” in Abstracts of Papers of ICOG-9 (Beijing, 1998), p. 65.

  30. R. T. Pidgeon, C. B. Smith, and C. M. Fanning, “Kimberlite and Lamproite Emplacement Ages in Western Australia,” in Kimberlites and Related Rocks: 1. Their Composition Occurrence, Origin, and Emplacement, Ed. by J. Ross, A. L. Jaques, et al., Geol. Soc. Austral. Spec. Publ., No. 14, 369–381 (1986).

  31. A. P. Nutman and M. T. Rosing, “SHRIMP U-Pb Zircon Geochronology of the Late Archean Ruinneesset Syenite, Skieldungen Alkaline Province, Southeast Greenland,” Geochim. Cosmochim. Acta 58, 3515–3518 (1994).

    Article  Google Scholar 

  32. Yu. A. Balashov, F. P. Mitrofanov, and V. V. Balagansky, “New Geochronological Data on Archean Rocks of the Kola Peninsula,” in Correlation of Precambrian Formations of the Kola-Karelian Region and Finland (Apatity, 1992), pp. 13–34.

  33. T. B. Bayanova, F. P. Mitrofanov, R. M. Galimzyanova, and N. V. Levkovich, “Archean Age of the Alkaline Granite from the Belye Tundry Massif, Kola Peninsula,” Dokl. Akad. Nauk 369(6), 806–808 (1999) [Dokl. Earth Sci. 369A (9), 1381–1383 (1999)].

    Google Scholar 

  34. F. P. Mitrofanov, D. R. Zozulya, T. B. Bayanova, and N. V. Levkovich, “The World’s Oldest Anorogenic Alkali Granitic Magmatism in the Keivy Structure on the Baltic Shield,” Dokl. Akad. Nauk 374(2), 238–241 (2000) [Dokl. Earth Sci. 374 (7), 1145–1148 (2000)].

    Google Scholar 

  35. N. M. Kudryashov and M. N. Petrovskii, “Isotopic Age of Lamprophyres in the Kolmozero-Voron’ya Greenstone Belt,” in Proceedings of the XI Conference of Young Scientists “The Geology and Geoecology of Fennoscandia, Northwestern and Central Russia” (Petrozavodsk, 2000), pp. 36–38 [in Russian].

  36. D. A. Wyman, R. Kerrich, and A. Polat, “Assembly of Archean Craton Mantle Lithosphere and Crust: Plume-Arc Interaction in the Abitibi-Wawa Subduction-Acretion Complex,” Precambrian Res. 115, 37–62 (2002).

    Article  Google Scholar 

  37. V. R. Vetrin, I. L. Kamenskii, T. B. Bayanova, et al., “Melanocratic Nodules in Alkaline Granites of the Ponoiskii Massif, Kola Peninsula: A Clue to Petrogenesis,” Geokhimiya, No. 11, 1178–1190 (1999) [Geochem. Int. 37 (11), 1061–1072 (1999)].

  38. Yu. A. Balashov, D. R. Zozulia, and M. J. Timmerman, “Archean Peralkaline Granites of the Kola Peninsula, Russia,” in Abstracts of Papers of ICOG-9 (Bejing, 1998), p. 5.

  39. M. V. Mints, V. N. Glaznev, A. N. Konilov, et al., The Lower Precambrian of Northeast Baltic Shield: Paleogeodynamics, Structure, and Evolution of Continental Crust (Nauchnyi Mir, Moscow, 1996) [in Russian].

    Google Scholar 

  40. I. D. Batieva, The Petrology of Alkaline Granitoids in the Kola Peninsula (Nauka, Leningrad, 1976) [in Russian].

    Google Scholar 

  41. A. N. Zavaritskii, Igneous Rocks (Akad. Nauk SSSR, Moscow, 1961) [in Russian].

    Google Scholar 

  42. B. A. Yudin, Gabbro-Labradorite Association in the Kola Peninsula and Its Metallogeny (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  43. A Predictive Model of the Deep Structure in the Zone of Geophysical Profile 2 in East Kola Peninsula, Ed. by F. P. Mitrofanov (Geol. Inst. Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, Apatity, 2000) [in Russian].

    Google Scholar 

  44. K. C. Condie, “The Supercontinent Cycle: Are There Two Patterns of Cyclicity?,” J. Afr. Earth Sci. 53, 179–183 (2002).

    Google Scholar 

  45. A. B. Blaxland, O. Van Breemen, and A. Steenfelt, “Age and Origin of Agpaitic Magmatism at Ilimaussaq, South Greenland: Rb-Sr Study,” Lithos 9, 31–38 (1976).

    Article  Google Scholar 

  46. V. I. Gerasimovskii, The Geochemistry of the Ilimaussak Alkaline Massif (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  47. L. N. Kogarko, U. Kramm, and B. Granert, “New Data on the Age and Genesis of Alkaline Rocks of the Lovozero Massif,” Dokl. Akad. Nauk SSSR 268(4), 970–973 (1983).

    Google Scholar 

  48. V. I. Gerasimovskii, V. P. Volkov, L. N. Kogarko, et al., The Geochemistry of Lovozero Alkaline Massif (Nauka, Moscow) [in Russian].

  49. A. A. Arzamastsev, F. Bea, V. N. Glaznev, et al., “The Kola Alkaline Province in the Paleozoic: The Composition of Initial Mantle Magmas and the Conditions of Magma Generation,” Ross. Zh. Nauk o Zemle 3(1), 3–24 (2001).

    Google Scholar 

  50. Yu. A. Balashov, The Isotopic Geochemical Evolution of the Earth’s Mantle and Crust (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  51. A. W. Hofmann, “Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust,” Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  Google Scholar 

  52. W. F. McDonough and S.-S. Sun, “The Composition of the Earth,” Chem. Geol. 120, 223–253 (1995).

    Google Scholar 

  53. D. J. De Paolo and G. J. Wasserburg, “Inferences about Magma Sources and Mantle Structure from Variations of 143Nd/144Nd,” Geophys. Rev. Lett. 3, 743–746 (1976).

    Google Scholar 

  54. S. R. Carter, N. M. Evensen, P. J. Hamilton, and R. K. O’Nions, “Continental Volcanics Derived from Enriched and Depleted Source Regions: Nd-and Sr-Isotope Evidence,” Earth Planet. Sci. Lett. 37, 401–408 (1978).

    Article  Google Scholar 

  55. S. L. Goldstein, R. K. O’Nions, and P. J. Hamilton, “A Sm-Nd Study of Atmospheric Dust and Particulates from Major River Systems,” Earth Planet. Sci. Lett. 70, 221–236 (1984).

    Article  Google Scholar 

  56. Yu. A. Balashov, “Pulsation Model of Mantle Differentiation: Evolution, Geochronological, Geochemical, Petrologic, and Geodynamic Implications,” in Proceedings of 30th International Geological Congress (1997), Vol. 1, pp. 79–95.

    Google Scholar 

  57. K. Bell and J. Blenkinsop, “Neodymium and Strontium Isotope Geochemistry of Carbonatites,” in Carbonatites: Genesis and Evolution, Ed. by K. Bell (Unwin Hyman, London, 1989), pp. 278–300.

    Google Scholar 

  58. D. R. Nelson, “Isotopic Characteristics of Potassic Rocks: Evidence for the Involvement of Subducted Sediments in Magma Genesis,” Lithos 28, 403–420 (1992).

    Article  Google Scholar 

  59. F. Bea, A. Arzamastsev, P. Montero, and L. Arzamastaeva, “Anomalous Alkaline Rocks of Soustov, Kola: Evidence of Mantle-derived Metasomatic Fluids Affecting Crustal Materials,” Contrib. Mineral. Petrol. 140, 554–566 (2001).

    Google Scholar 

  60. Yu. A. Balashov, “Isotopic Heterogeneity of the Earth’s Upper Mantle,” in Geochemistry of Radiogenic Isotopes during the Early Evolution of the Earths, Ed. by Yu. A. Shukolyukov (Nauka, Moscow, 1983), pp. 77–96 [in Russian].

    Google Scholar 

  61. M. Stein and A. W. Hofmann, “Mantle Plumes and Episodic Crustal Growth,” Nature 372, 63–68 (1994).

    Article  Google Scholar 

  62. Yu. A. Kostitsyn, “Is the Sm-Nd Isotopic System of the Mantle Identical to That of Chondrites?,” in Proceedings of the Year Session “The Geochemistry of Igneous Rocks: Alkaline Magmatism of the Earth” (Moscow, 2002), pp. 53–54 [in Russian].

  63. Yu. A. Kostitsyn, “Sm-Nd, Lu-Hf, and Rb-Sr Isotopic Systems of the Primitive Mantle,” in Proceedings of the II Russian Conference on Isotopic Geochronology “Role of Isotopic Geochronology in the Solution of Geodynamic and Ore Formation Problems” (Tsentr Inform. Kul’t., St. Petersburg, 2003), pp. 213–216 [in Russian].

    Google Scholar 

  64. Yu. A. Kostitsyn, “Terrestrial and Chondritic Sm-Nd and Lu-Hf Isotopic Systems: Are They Identical?,” Petrologiya 12(5), 451–466 (2004) [Petrology 12 (5), 397–411 (2004)].

    Google Scholar 

  65. Yu. D. Pushkarev, “The Oldest Geochronological Boundary in the Crust-Mantle-Core Evolution and the Bulk Composition of Silicic Earth,” in Proceedings of the II Russian Conference on Isotopic Geochronology “Role of Isotopic Geochronology in Solution of Geodynamic and Ore Formation Problems” (Tsentr Inform. Kul’t., St. Petersburg, 2003), pp. 376–380 [in Russian].

    Google Scholar 

  66. A. W. Hofmann, “Mantle Geochemistry: The Message from Ocean Volcanism,” Nature 385, 219–229 (1997).

    Article  Google Scholar 

  67. D. G. Pearson, “The Age of Continental Roots,” Lithos 48, 171–194 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Balashov.

Additional information

Original Russian Text © Yu.A. Balashov, V.N. Glaznev, 2006, published in Geokhimiya, 2006, No. 3, pp. 309–321.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balashov, Y.A., Glaznev, V.N. Cycles of alkaline magmatism. Geochem. Int. 44, 274–285 (2006). https://doi.org/10.1134/S0016702906030050

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702906030050

Keywords

Navigation