Skip to main content
Log in

Determining the temperature of the Earth’s continental upper mantle from geochemical and seismic data

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

A method is proposed for determining the temperature of the Earth’s upper mantle from geochemical and seismic data. The data are made consistent by physicochemical simulations, which enable one to derive physical characteristics from geochemical compositional models (direct problem) and to convert seismic velocity profiles into model for the temperature distribution (inverse problem). The methods were used to simulate temperature distribution profiles in the “normal” and “cold” mantle on the basis of profiles for the velocities of P and S waves in the IASP91 model and regional models for the Kaapvaal craton. The constraints assumed for the chemical composition included the depleted material of garnet peridotites and the fertile primitive mantle. The conversion of seismic into thermal profiles was conducted by minimizing the Gibbs free energy with the use of equations of state for the mantle material with regard for anharmonicity and the effects of inelasticity. The sensitivity of the model to the chemical composition and its importance in application to the solution of inverse problems is demonstrated. Temperature profiles derived from the IASP91 and some regional models for depths of 200–210 km display an inflection on geotherms toward decreasing temperatures, which is physically senseless. This anomaly cannot be related to either the presence of volatiles or the occurrence of partial melting, because both of them should have resulted in a decrease, but not an increase, in the seismic velocities. Temperature inversion can be ruled out by the gradual fertilization of the mantle with depth. In this situation, the upper mantle material at depths of 200–300 km should be enriched in FeO, Al2O3, and CaO relative to garnet peridotites and be simultaneously depleted in these oxides relative to the pyrolite material of the primitive mantle. It can be generally concluded that both the lithosphere and sublithospheric mantle of the Kaapvaal craton, as well as the normal mantle, should be chemically stratified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Kogarko and I. D. Ryabchikov, “The Earth’s Mantle Differentiation: Evidence from Geochemical Data,” Geokhimiya, No. 2, 223–235 (1988).

  2. W. F. McDonough, “Constraints on the Composition of the Continental Lithospheric Mantle,” Earth Planet. Sci. Lett. 101, 1–18 (1990).

    Article  Google Scholar 

  3. G. Nolet, S. P. Grand, and B. L. N. Kennett, “Seismic Heterogeneity in the Upper Mantle,” J. Geophys. Res. 99B, 23 753–23 766 (1994).

    Google Scholar 

  4. I. M. Artemieva and W. D. Mooney, “Thermal Thickness and Evolution of Precambrian Lithosphere: A Global Study,” J. Geophys. Res. 106(B8), 16387–16414 (2001).

    Article  Google Scholar 

  5. R. L. Rudnick, W. F. McDonough, and R. J. O’Connell, “Thermal Structure, Thickness, and Composition of Continental Lithosphere,” Chem. Geol. 145, 395–411 (1998).

    Article  Google Scholar 

  6. A. A. Nyblade, “Heat Flow and the Structure of Precambrian Lithosphere,” Lithos 48, 81–91 (1999).

    Article  Google Scholar 

  7. C. Jaupart and J.-C. Mareschal, “The Thermal Structure and Thickness of Continental Roots,” Lithos 48, 93–114 (1999).

    Article  Google Scholar 

  8. H. N. Pollack, S. J. Hurter, and J. R. Johnson, “Heat Flow from the Earth’s Interior: Analysis of the Global Data Set,” Rev. Geophys. 31, 267–280 (1993).

    Article  Google Scholar 

  9. A. H. E. Röhm, R. Snieder, S. Goes, and J. Trampert, “Thermal Structure of Continental Upper Mantle Inferred from S-Wave Velocity and Surface Heat Flow,” Earth Planet. Sci. Lett. 181(3), 395–407 (2000).

    Google Scholar 

  10. M. K. Kaban, “The Structure of the Continental Upper Mantle: Seismic and Gravimetric Data,” Elektr. Nauchno-Inform. Zh. Vestn. Otd. Nauk O Zemle RAN, No. 1 (2002).

  11. G. Ekstrom and A. M. Dziewonski, “The Unique Anisotropy of the Pacific Upper Mantle,” Nature 394, 168–172 (1998).

    Google Scholar 

  12. J. Ritsema and H. van Heijst, “New Seismic Model of the Upper Mantle beneath Africa,” Geology 28, 63–66 (2000).

    Article  Google Scholar 

  13. K. P. Furlong, W. Spakman, and R. Wortel, “Thermal Structure of the Continental Lithosphere: Constraints from Seismic Tomography,” Tectonophysics 244, 107–117 (1995).

    Article  Google Scholar 

  14. S. V. Sobolev, H. Zeyen, G. Stoll, et al., “Upper Mantle Temperatures from Teleseismic Tomography of French Massif Central Including Effects of Composition, Mineral Reactions, Anharmonicity, Unelasticity, and Partial Melt,” Earth Planet. Sci. Lett. 139, 147–163 (1996).

    Article  Google Scholar 

  15. S. V. Sobolev, H. Zeyen, H. Granet, et al., “Upper Mantle Temperatures and Lithosphere-Asthenosphere System beneath the French Massif Central Constrained by Seismic, Gravity, Petrologic, and Thermal Observations,” Tectonophysics 275, 143–164 (1997).

    Article  Google Scholar 

  16. F. Deschamps and J. Trampert, “Mantle Tomography and Its Relation to Temperature and Composition,” Phys. Earth Planet. Inter. 140, 277–291 (2003).

    Article  Google Scholar 

  17. G. Poupinet, N. Arndt, and P. Vacher, “Seismic Tomography beneath Stable Tectonic Regions and the Origin and Composition of the Continental Lithospheric Mantle,” Earth Planet. Sci. Lett. 212, 89–101 (2003).

    Article  Google Scholar 

  18. F. Cammarano, S. Goes, P. Vacher, and D. Giardini, “Inferring Upper Mantle Temperatures from Seismic Velocities,” Phys. Earth Planet. Inter. 138, 197–222 (2003).

    Article  Google Scholar 

  19. S. Goes, R. Govers, and P. Vacher, “Shallow Mantle Temperatures under Europe from P and S Wave Tomography,” J. Geophys. Res. 105, 11 153–11 169 (2000).

    Article  Google Scholar 

  20. S. Goes and S. van der Lee, “Thermal Structure of the North American Uppermost Mantle Inferred from Seismic Tomography,” J. Geophys. Res. 107(B3) (2002).

  21. O. L. Kuskov and V. A. Kronrod, “Basic Thermodynamic Models of the Earth’s Upper Mantle: Fluctuations of Chemical Composition and Temperature,” Geokhimiya, No. 10, 1383–1397 (1994).

  22. V. A. Kronrod and O. L. Kuskov, “Determination of the Temperature and Bulk Composition of the Upper Mantle from Seismic Data,” Geochem. Int. 34, 72–76 (1996).

    Google Scholar 

  23. A. V. Ukhanov, I. D. Ryabchikov, and A. D. Khar’kiv, Lithospheric Mantle of the Yakutian Kimberlite Province (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  24. L. V. Solov’eva, B. M. Vladimirov, and L. V. Dneprovskaya, Kimberlites and Kimberlite-like Rocks: Upper Mantle beneath Ancient Platforms (Nauka, Novosibirsk, 1994) [in Russian].

    Google Scholar 

  25. A. A. Finnerty and F. R. Boyd, “Thermobarometry for Garnet Peridotites: Basis for the Determination of Thermal and Compositional Structure of the Upper Mantle,” in Mantle Xenoliths, Ed. by P. H. Nixon (Wiley, New York, 1987), pp. 381–402.

    Google Scholar 

  26. T. Kukkonen and P. Peltonen, “Xenolith-controlled Geotherm for the Central Fennoscandian Shield: Implications for Lithosphere-Asthenosphere Relations,” Tectonophysics 304, 301–315 (1999).

    Article  Google Scholar 

  27. D. E. James, F. R. Boyd, D. Schutt, et al., “Xenolith Constraints on Seismic Velocities in the Upper Mantle beneath Southern Africa,” Geochem. Geophys. Geosyst. 5(1), 1–32 (2004).

    Article  Google Scholar 

  28. O. G. Sorokhtin and S. A. Ushakov, The Global Evolution of the Earth (Mosk. Gos. Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  29. E. V. Artyushkov and A. Hofmann, “Neotectonic Crustal Uplift of the Continents and Its Possible Mechanisms: The Case of Southern Africa,” Surv. Geophys. 19, 369–415 (1998).

    Article  Google Scholar 

  30. F. R. Boyd, “High-and Low-Temperature Garnet Peridotite Xenoliths and Their Possible Relation to the Lithosphere-Asthenosphere Boundary beneath Southern Africa,” in Mantle Xenoliths, Ed. by P. H. Nixon (Wiley, New York, 1987), pp. 403–412.

    Google Scholar 

  31. F. R. Boyd and S. A. Mertzman, “Composition and Structure of the Kaapvaal Lithosphere, Southern Africa,” in Magmatic Processes: Physiochemical Principles, Ed. by B. A. Mysen, Geochem. Soc. Spec. Publ. 1, 13–24 (1987).

  32. B. L. N. Kennet and E. R. Engdahl, “Traveltimes for Global Earthquake Location and Phase Identification,” Geophys. J. Int. 105, 429–465 (1991).

    Google Scholar 

  33. M. Zhao, C. A. Langston, A. A. Nyblade, and T. J. Owens, “Upper Mantle Velocity Structure beneath Southern Africa from Modeling Regional Seismic Data,” J. Geophys. Res. 104B, 4783–4794 (1999).

    Google Scholar 

  34. R. E. Simon, C. Wright, E. M. Kgaswane, and M. T. O. Kwadiba, “The P Wavespeed Structure below and around the Kaapvaal Craton to Depths of 800 km, from Traveltimes and Waveforms of Local and Regional Earthquakes and Mining-induced Tremors,” Geophys. J. Int. 151, 132–145 (2002).

    Article  Google Scholar 

  35. I. D. Ryabchikov, “Fluid Regime of Mantle Plumes,” Geokhimiya, No. 9, 923–927 (2003), [Geochem. Int. 41 (9), 838–843 (2003)].

  36. J. R. Smyth and D. J. Frost, “The Effect of Water on the 410-km Discontinuity: An Experimental Study,” Geophys. Rev. Lett. 29, 1029 (2002).

    Article  Google Scholar 

  37. W. R. Smith and R. M. Missen, Chemical Reaction Equilibrium Analysis (Wiley-Intersci, New York, 1982).

    Google Scholar 

  38. C. de Capitani and T. H. Brown, “The Computation of Equilibrium in Complex Systems Containing Non-Ideal Solutions,” Geochim. Cosmochim. Acta 51, 2639–2652 (1987).

    Google Scholar 

  39. O. L. Kuskov and R. F. Galimzyanov, “Thermodynamics of Stable Mineral Assemblages of the Mantle Transition Zone,” in Chemical Physics of Terrestrial Planets, Ed. by S. K. Saxena (Springer, New York, 1986), Vol. 6, pp. 310–361.

    Google Scholar 

  40. O. L. Kuskov and O. B. Fabrichnaya, “Constitution of the Moon: 2. Composition and Seismic Properties of the Lower Mantle,” Phys. Earth Planet. Inter. 83, 197–216 (1994).

    Article  Google Scholar 

  41. O. L. Kuskov, “Constitution of the Moon: 4. Composition of the Mantle from Seismic Data,” Phys. Earth Planet. Inter. 102, 239–257 (1997).

    Article  Google Scholar 

  42. O. L. Kuskov and V. A. Kronrod, “Core Sizes and Internal Structure of the Earth’s and Jupiter’s Satellites,” Icarus 151, 204–227 (2001).

    Article  Google Scholar 

  43. V. N. Zharkov and V. A. Kalinin, Equations of State for Solids at High Pressures and Temperatures (Nauka, Moscow, 1968; Consultants Bureau, New York, 1971).

    Google Scholar 

  44. O. L. Kuskov, R. F. Galimzyanov, V. A. Kalinin, et al., “The Development of Thermal Equation of State for Solid Phases (Periclase, Coesite, and Stishovite) on Their Compression Ratio and the Calculation of Phase Equilibrium Coesite-Stishovite,” Geokhimiya, No. 7, 984–1001 (1982).

  45. V. B. Polyakov and O. L. Kuskov, “Internally Consistent Model for Calculation of Thermoelastic and Calorimetric Properties of Minerals,” Geokhimiya, No. 7, 1096–1122 (1994).

  46. V. Pan’kov, V. Ulman, R. Hainrich, and D. Crake, “Thermodynamics of Deep Geophysical Media,” Ross. Zh. Nauk o Zemle 1, 13–52 (1998).

    Google Scholar 

  47. P. I. Dorogokupets, “Equation of State and Internally Consistent Thermodynamic Functions of Minerals,” Petrologiya 9(6), 612–622 (2001) [Petrology 9 (6), 534–544 (2001)].

    Google Scholar 

  48. O. L. Anderson, Equations of State of Solids for Geophysics and Ceramic Science (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  49. G. Leibfried and W. Ludwig, Theory of Anharmonic Effects in Crystals (Academic, New York, 1961; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  50. J. A. Reissland, The Physics of Phonons (Wiley, London, 1973; Mir, Moscow, 1975).

    Google Scholar 

  51. V. N. Zharkov, Geophysical Studies of Planets and Satellites (Ob” ed. Inst. Fiz. Zemli, Ross. Akad. Nauk, Moscow, 2003) [in Russian].

    Google Scholar 

  52. V. N. Zharkov, L. N. Dorofeeva, V. M. Dorofeev, and V. M. Lyubimov, “Test Distributions of Dissipative Function Q(1) in the Earth’s Envelope,” Izv. Akad. Nauk SSSR, Fiz. Zemli, No. 12, 3–12 (1974).

  53. S. Karato, “Importance of Anelasticity in the Interpretation of Seismic Tomography,” Geophys. Rev. Lett. 20, 1623–1626 (1993).

    Google Scholar 

  54. M. Grégoire, D. R. Bell, and A. P. Le Roex, “Garnet Lherzolites from the Kaapvaal Craton (South Africa): Trace Element Evidence for a Metasomatic History,” J. Petrol. 44, 629–657 (2003).

    Google Scholar 

  55. L. Vinnik and V. Farra, “Subcratonic Low-Velocity Layer and Flood Basalts,” Geophys. Rev. Lett. 29(4) (2002).

  56. K. Priestley, “Velocity Structure of the Continental Upper Mantle: Evidence from Southern Africa,” Lithos 48, 45–56 (1999).

    Article  Google Scholar 

  57. X. Qiu, K. Priestley, and D. McKenzie, “Average Lithospheric Structure of Southern Africa,” Geophys. J. Int. 127, 563–587 (1996).

    Google Scholar 

  58. R. L. Saltzer, “Upper Mantle Structure of the Kaapvaal Craton from Surface Wave Analysis: A Second Look,” Geophys. Rev. Lett. 29(6) (2002).

  59. M. Freybourger, J. B. Gaherty, T. H. Jordan, et al., “Structure of the Kaapvaal Craton from Surface Waves,” Geophys. Rev. Lett. 28, 2489–2492 (2001).

    Article  Google Scholar 

  60. M. Q. W. Jones, “Heat Flow in the Witwatersrand Basin and Environs and Its Significance for the South African Shield Geotherm and Lithosphere Thickness,” J. Geophys. Res. 93B, 3243–3260 (1988).

    Google Scholar 

  61. F. R. Boyd and J. J. Gurney, “Diamonds and the African Lithosphere,” Science 232, 472–477 (1986).

    Google Scholar 

  62. S. Karato, “On the Lehmann Discontinuity,” Geophys. Rev. Lett. 19, 2255–2258 (1992).

    Google Scholar 

  63. J. B. Gaherty and T. H. Jordan, “Lehmann Discontinuity as the Base of an Anisotropic Layer beneath Continents,” Science 268, 1468–1471 (1995).

    Google Scholar 

  64. Y. J. Gu, A. M. Dziewonski, and G. Ekström, “Preferential Detection of the Lehmann Discontinuity beneath Continents,” Geophys. Rev. Lett. 28, 4655–4658 (2001).

    Article  Google Scholar 

  65. N. P. Pokhilenko, N. V. Sobolev, F. R. Boyd, et al., “Megacrystalline Pyrope Peridotites in the Lithosphere of Siberian Platform: Mineralogy, Geochemistry, and Genesis,” Geol. Geofiz. 34, 71–84 (1993).

    Google Scholar 

  66. A. M. Doroshev, G. P. Brey, A. V. Girnis, et al., “Garnets of Pyrope-Knorringite Series under Mantle Conditions: Experimental Studies of the System MgO-Al2O3-SiO2-Cr2O3,” Geol. Geofiz. 38(2), 523–545 (1997).

    Google Scholar 

  67. Mineral Physics and Crystallography: A Handbook of Physical Constants, Ed. by T. J. Ahrens (Am. Geophys. Union, Washington, 1995).

    Google Scholar 

  68. A. M. Doroshev, V. M. Galkin, A. I. Turkin, and A. A. Kalinin, “Thermal Expansion in the Pyrope-Grossular and Pyrope-Knorringite Garnet Series,” Geochem. Int. 27(8), 144–147 (1990).

    Google Scholar 

  69. S. Klemme, H. St. C. O’Neil, W. Schnelle, and E. Gmelin, “The Heat Capacity of MgCr2O4, FeCr2O4, and Cr2O3 at Low Temperatures and Derived Thermodynamic Properties,” Am. Mineral. 85, 1686–1693 (2000).

    Google Scholar 

  70. A. V. Girnis and G. P. Brey, “Garnet-Spinel-Olivine-Orthopyroxene Equilibria in the FeO-MgO-Al2O3-SiO2-Cr2O3 System: II. Thermodynamic Analysis,” Eur. J. Mineral. 11, 619–636 (1999).

    Google Scholar 

  71. S. Klemme, “The Influence of Cr on the Garnet-Spinel Transition in the Earth’s Mantle: Experiments in the System MgO-Cr2O3-SiO2 and Thermodynamic Modeling,” Lithos 77, 639–646 (2004).

    Article  Google Scholar 

  72. L. P. Vinnik, “The Mantle beneath the Kaapvaal Craton,” South. Afr. Geophys. Rev. 2, 51–54 (1998).

    Google Scholar 

  73. L. P. Vinnik, R. W. E. Green, and L. O. Nicolaysen, “Seismic Constraints on Dynamics of the Mantle of the Kaapvaal Craton,” Phys. Earth Planet. Int. 95, 139–151 (1996).

    Google Scholar 

  74. P. G. Silver and W. W. Chan, “Shear Wave Splitting and Subcontinental Mantle Deformation,” J. Geophys. Res. 96, 16 429–16 454 (1991).

    Google Scholar 

  75. V. Schulte-Pelkum and D. K. Blackman, “A Synthesis of Seismic P and S Anisotropy,” Geophys. J. Int. 154, 166–178 (2003).

    Article  Google Scholar 

  76. C. Long and N. I. Christensen, “Seismic Anisotropy of South African Upper Mantle Xenoliths,” Earth Planet. Sci. Lett. 179, 551–565 (2000).

    Article  Google Scholar 

  77. D. E. James, M. J. Fouch, J. C. van Decar, et al., “Tectospheric Structure beneath Southern Africa,” Geophys. Rev. Lett. 28, 2485–2488 (2001).

    Article  Google Scholar 

  78. S. D. King, “Archean Cratons and Mantle Dynamics,” Earth Planet. Sci. Lett. 234, 1–14 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Kuskov.

Additional information

Original Russian Text © O.L. Kuskov, V.A. Kronrod, 2006, published in Geokhimiya, 2006, No. 3, pp. 267–283.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuskov, O.L., Kronrod, V.A. Determining the temperature of the Earth’s continental upper mantle from geochemical and seismic data. Geochem. Int. 44, 232–248 (2006). https://doi.org/10.1134/S0016702906030025

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702906030025

Keywords

Navigation