Skip to main content
Log in

On Compactification of Spaces of Measures

  • Research Articles
  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

In this paper, we compare the Stone–Čech compactification \(\beta \mathcal{P}(X)\) of the space \(\mathcal{P}(X)\) of Radon probability measures on a Tychonoff space \(X\), equipped with the weak topology, with the space \(\mathcal{P}(\beta X)\) of Radon probability measures on the Stone–Čech compactification \(\beta X\) of the space \(X\). It is shown that for any noncompact metric space \(X\), the compactification \(\beta \mathcal{P}(X)\) does not coincide with \(\mathcal{P}(\beta X)\). We discuss the case of more general Tychonoff spaces and also the case of the Samuel compactification, for which the coincidence holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. K. A. Afonin, V. I. Bogachev, “Kantorovich type topologies on spaces of measures and convergence of barycenters”, Commun. Pure Appl. Anal., 22:2 (2023), 597–612.

    Article  MathSciNet  Google Scholar 

  2. A. D. Alexandroff, “Additive set-functions in abstract spaces”, Rec. Math. [Mat. Sbornik] N.S., 8:2 (1940), 307–348.

    MathSciNet  Google Scholar 

  3. A. V. Arkhangel’skii, V. I. Ponomarev, Fundamentals of general topology through problems and exercises, Nauka, Moscow, 1974; A. V. Arkhangel’skii, V. I. Ponomarev, Fundamentals ofgeneral topology. Problems and exercises, Reidel, Dordrecht, 1984.

    Google Scholar 

  4. T. Banakh, A. Chigogidze, V. Fedorchuk, “On spaces of \(\sigma\)-additive probability measures”, Topology Appl., 133:2 (2003), 139–155.

    Article  MathSciNet  Google Scholar 

  5. T. O. Banakh, T. N. Radul, “Topology of spaces of probability measures”, Sb. Math., 188:7 (1997), 973–995.

    Article  MathSciNet  Google Scholar 

  6. V. I. Bogachev, Measure theory, 2 Springer-Verlag, Berlin–New York, 2007.

    Book  Google Scholar 

  7. V. I. Bogachev, Weak convergence of measures, Amer. Math. Soc., Providence, RI, 2018.

    Book  Google Scholar 

  8. V. I. Bogachev, O. G. Smolyanov, Topological vector spaces and their applications, Springer, Cham, 2017.

    Book  Google Scholar 

  9. V. I. Bogachev, O. G. Smolyanov, Real and functional analysis, Springer, Cham, 2020.

    Book  Google Scholar 

  10. R. Engelking, General topology, Heldermann, 1989.

    Google Scholar 

  11. V. V. Fedorchuk, “Probability measures in topology”, Russian Math. Surveys, 46:1 (1991), 45–93.

    Article  MathSciNet  Google Scholar 

  12. V. V. Fedorchuk, “Topological completeness of spaces of measures”, Izv. Math., 63:4 (1999), 827–843.

    Article  MathSciNet  Google Scholar 

  13. V. V. Fedorchuk, Y. V. Sadovnichy, “On some categorical properties of uniform spaces of probability measures”, Topology Appl., 82:1–3 (1998), 131–151.

    Article  MathSciNet  Google Scholar 

  14. D. Fremlin, Measure theory, 1–5 University of Essex, Colchester, 2000–2003.

    Google Scholar 

  15. L. Gillman, M. Jerison, Rings of continuous functions, Van Nostrand, Princeton– Toronto–London–New York, 1960.

    Book  Google Scholar 

  16. W. Grömig, “On a weakly closed subset of the space of \(\tau\)-smooth measures”, Proc. Amer. Math. Soc., 43 (1974), 397–401.

    MathSciNet  Google Scholar 

  17. J. R. Isbell, Uniform spaces, Amer. Math. Soc., Providence, RI, 1964.

    Book  Google Scholar 

  18. G. Koumoullis, “Some topological properties of spaces of measures”, Pacif. J. Math., 96:2 (1981), 419–433.

    Article  MathSciNet  Google Scholar 

  19. J. van Mill, “An introduction to \(\beta \omega\)”, Handbook of set-theoretic topology, North- Holland, Amsterdam, 1984, 503–567.

    Chapter  Google Scholar 

  20. S. Mrówka, “Some set-theoretic constructions in topology”, Fund. Math., 94:2 (1977), 83–92.

    Article  MathSciNet  Google Scholar 

  21. J. Pachl, Uniform spaces and measures, Springer, New York, 2013.

    Book  Google Scholar 

  22. Yu. V. Prokhorov, “Convergence of random processes and limit theorems in probability theory”, Theory Probab. Appl., 1:2 (1956), 157–214.

    Article  MathSciNet  Google Scholar 

  23. W. Rudin, “Homogeneity problems in the theory of Čech compactifications”, Duke Math. J., 23 (1956), 409–419.

    MathSciNet  Google Scholar 

  24. A. Szymański, “The existence of \(P(\alpha)\)-points of \(N\)* for \(\aleph_0<\alpha< \mathfrak{c}\)”, Colloq. Math., 37:2 (1977), 179–184.

    MathSciNet  Google Scholar 

  25. F. Terpe, J. Flachsmeyer, “Some applications of the theory of compactifications of topological spaces and measure theory”, Russian Math. Surveys, 32:5 (1977), 133–171.

    Article  Google Scholar 

  26. F. Topsøe, “Topology and measure”, Matematika, 16:4 (1972), 90–148.

    Google Scholar 

  27. V. S. Varadarajan, “Measures on topological spaces”, Mat. Sb. (N.S.), 55:1 (1961), 35–100; English transl.: Amer. Math. Soc. Transl. (2), 48 (1965), 161–228.

    MathSciNet  Google Scholar 

  28. J. E. Vaughan, “Countably compact and sequentially compact spaces”, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, 569–602.

    Chapter  Google Scholar 

  29. A. M. Vershik, “Descending sequences of measurable decompositions, and their applications”, Dokl. Akad. Nauk SSSR, 193:4 (1970), 748–751; English transl.: Soviet Math. Dokl., 11 (1970), 1007–1011.

    MathSciNet  Google Scholar 

  30. A. M. Vershik, “Theory of decreasing sequences of measurable partitions”, St. Petersburg Math. J., 6:4 (1995), 705–761.

    MathSciNet  Google Scholar 

  31. R. C. Walker, The Stone–Čech compactification, Springer-Verlag, Berlin–New York, 1974.

    Book  Google Scholar 

  32. R. F. Wheeler, “A survey of Baire measures and strict topologies”, Expos. Math., 1:2 (1983), 97–190.

    MathSciNet  Google Scholar 

  33. E. Wimmers, “The Shelah \(P\)-point independence theorem”, Israel J. Math., 43:1 (1982), 28–48.

    Article  MathSciNet  Google Scholar 

  34. R. G. Woods, “The minimum uniform compactification of a metric space”, Fund. Math., 147:1 (1995), 39–59.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I am grateful to K. A. Afonin and S. N. Popova for useful discussions.

Funding

This research is supported by the Russian Science Foundation grant no. 22-11-00015 (at Lomonosov Moscow State University), https://rscf.ru/en/project/22-11-00015/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Bogachev.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated from Funktsional'nyi Analiz i ego Prilozheniya, 2024, Vol. 58, pp. 4–21 https://doi.org/10.4213/faa4184.

Dedicated to Anatoly Moiseevich Vershik, on his 90th birthday

Publisher’s note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachev, V. On Compactification of Spaces of Measures. Funct Anal Its Appl 58, 2–15 (2024). https://doi.org/10.1134/S0016266324010027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016266324010027

Keywords

Navigation