Skip to main content
Log in

Improved Inequalities for Numerical Radius via Cartesian Decomposition

  • Research Articles
  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We derive various lower bounds for the numerical radius \(w(A)\) of a bounded linear operator \(A\) defined on a complex Hilbert space, which improve the existing inequality \(w^2(A)\geq \frac{1}{4}\|A^*A+AA^*\|\). In particular, for \(r\geq 1\), we show that

$$\tfrac{1}{4}\|A^*A+AA^*\|\leq\tfrac{1}{2}(\tfrac{1}{2}\|\operatorname{Re}(A)+\operatorname{Im}(A)\|^{2r}+\tfrac{1}{2}\|\operatorname{Re}(A)-\operatorname{Im}(A)\|^{2r})^{1/r} \leq w^{2}(A),$$

where \(\operatorname{Re}(A)\) and \(\operatorname{Im}(A)\) are the real and imaginary parts of \(A\), respectively. Furthermore, we obtain upper bounds for \(w^2(A)\) refining the well-known upper estimate \(w^2(A)\leq \frac{1}{2}(w(A^2)+\|A\|^2)\). Criteria for \(w(A)=\frac12\|A\|\) and for \(w(A)=\frac{1}{2}\sqrt{\|A^*A+AA^*\|}\) are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Abu-Omar and F. Kittaneh, “A generalization of the numerical radius”, Linear Algebra Appl., 569 (2019), 323–334.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Bhunia, S. S. Dragomir, M. S. Moslehian, and K. Paul, Lectures on Numerical Radius Inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer, Cham, 2022.

    Book  MATH  Google Scholar 

  3. P. Bhunia, S. Bag, and K. Paul, “Bounds for zeros of a polynomial using numerical radius of Hilbert space operators”, Ann. Funct. Anal., 12 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Bhunia, S. Jana, and K. Paul, Refined inequalities for the numerical radius of Hilbert space operators, arXiv: 2106.13949.

  5. P. Bhunia and K. Paul, “Refinements of norm and numerical radius inequalities”, Rocky Mountain J. Math., 51:6 (2021), 1953–1965.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Bhunia and K. Paul, “Development of inequalities and characterization of equality conditions for the numerical radius”, Linear Algebra Appl., 630 (2021), 306–315.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. L. Buzano, “Generalizzazione della diseguaglianza di Cauchy–Schwarz (Italian)”, Rend. Sem. Mat. Univ. e Politec. Torino, 31 (1974), 405–409.

    MATH  Google Scholar 

  8. K. Davidson and S. C. Power, “Best approximation in \(C^*\)-algebras”, J. Reine Angew. Math., 368 (1986), 43–62.

    MathSciNet  MATH  Google Scholar 

  9. S. S. Dragomir, “Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces”, Demonstratio Math., 40:2 (2007), 411–417.

    MathSciNet  MATH  Google Scholar 

  10. K. Feki and T. Yamazaki, “Joint numerical radius of spherical Aluthge transforms of tuples of Hilbert space operators”, Math. Inequal. Appl., 24:2 (2021), 405–420.

    MathSciNet  MATH  Google Scholar 

  11. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1988.

    MATH  Google Scholar 

  12. F. Kittaneh, “Numerical radius inequalities for Hilbert space operators”, Studia Math., 168:1 (2005), 73–80.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Mal, K. Paul, and J. Sen, “Birkhoff–James orthogonality and numerical radius inequalities of operator matrices”, Monatsh. Math., 197:4 (2022), 717–731.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. S. Moslehian, Q. Xu, and A. Zamani, “Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces”, Linear Algebra Appl., 591 (2020), 299–321.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. E. Omidvar, H. R. Moradi, and Kh. Shebrawi, “Sharpening some classical numerical radius inequalities”, Oper. Matrices, 12:2 (2018), 407–416.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Sahoo, N. C. Rout, and M. Sababheh, “Some extended numerical radius inequalities”, Linear Multilinear Algebra, 69:5 (2021), 907–920.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Yamazaki, “On upper and lower bounds for the numerical radius and an equality condition”, Studia Math., 178:1 (2007), 83–89.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Zamani and P. Wójcik, “Numerical radius orthogonality in \(C^*\)-algebras”, Ann. Funct. Anal., 11:4 (2020), 1081–1092.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Paul.

Additional information

Translated from Funktsional'nyi Analiz i ego Prilozheniya, 2023, Vol. 57, pp. 24–37 https://doi.org/10.4213/faa3990.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, P., Jana, S., Moslehian, M.S. et al. Improved Inequalities for Numerical Radius via Cartesian Decomposition. Funct Anal Its Appl 57, 18–28 (2023). https://doi.org/10.1134/S0016266323010021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016266323010021

Keywords

Navigation