Skip to main content
Log in

Localization for Hyperbolic Measures on Infinite-Dimensional Spaces

  • Research Articles
  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

Properties of the extreme points of families of concave measures on infinite-dimensional locally convex spaces are studied. The localization method is generalized to hyperbolic measures on Fréchet spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Arutyunyan and E. D. Kosov, “Polynomials on spaces with logarithmically concave measures”, Dokl. Akad. Nauk, 460:5 (2015), 503–506; English transl.:, Dokl. Math., 91:1 (2015), 72–75.

    MATH  Google Scholar 

  2. S. G. Bobkov, “Remarks on the growth of \(L^p\)-norms of polynomials”, Geometric Aspects of Functional Analysis, Proceedings of the Israel Seminar (GAFA) 1996–2000, Lecture Notes in Math, 1745 Springer-Verlag, Berlin, 2000, 27–35.

    Article  MathSciNet  Google Scholar 

  3. S. G. Bobkov, “Some generalizations of Prokhorov’s results on Khinchin-type inequalities for polynomials”, Teor. Veroyatnost. Primenen., 45:4 (2000), 745–748; English transl.:, Theory Probab. Appl., 45:4 (2001), 644–647.

    Article  Google Scholar 

  4. S. G. Bobkov, “Localization proof of the isoperimetric Bakry–Ledoux inequality and some applications”, Teor. Veroyatnost. Primenen., 47:2 (2002), 340–346; English transl.:, Theory Probab. Appl., 47:2 (2003), 308–314.

    Article  Google Scholar 

  5. S. G. Bobkov, “On isoperimetric constants for log-concave probability distributions”, Geometric Aspects of Functional Analysis, Proceedings of the Israel Seminar (GFA) 2004–2005, Lecture Notes in Math., 1910 Springer-Verlag, Berlin, 2007, 81–88.

    MathSciNet  MATH  Google Scholar 

  6. S. G. Bobkov and J. Melbourne, “Localization for infinite-dimensional hyperbolic measures”, Dokl. Akad. Nauk, 462:3 (2015), 261–263; English transl.:, Dokl. Math., 91:3 (2015), 297–299.

    MathSciNet  MATH  Google Scholar 

  7. S. G. Bobkov and J. Melbourne, “Hyperbolic measures on infinite dimensional spaces”, Probab. Surv., 13 (2016), 57–88.

    Article  MathSciNet  Google Scholar 

  8. S. G. Bobkov and F. L. Nazarov, “Sharp dilation-type inequalities with fixed parameter of convexity”, Zap. Nauchn. Sem. POMI, 351 (2007), 54–78; English transl.:, J. Math. Sci. (N. Y.), 152:6 (2008), 826–839.

    Google Scholar 

  9. V. I. Bogachev, Measure Theory. V. 1, 2, Springer, Berlin–Heidelberg, 2007.

    Book  Google Scholar 

  10. V. I. Bogachev, Weak Convergence of Measures., Amer. Math. Soc., Providence, RI, 2018.

    Book  Google Scholar 

  11. V. I. Bogachev and O. G. Smolyanov, Topological Vector Spaces and Their Applications, Springer, Cham, 2017.

    Book  Google Scholar 

  12. C. Borell, “Convex measures on locally convex spaces”, Ark. Math., 12 (1974), 239–252.

    Article  MathSciNet  Google Scholar 

  13. C. Borell, “Convex set functions in \(d\)-space”, Period. Math. Hungar., 6:2 (1975), 111–136.

    Article  MathSciNet  Google Scholar 

  14. C. Borell, “Convexity of measures in certain convex cones in vector space \(\sigma \)-algebras”, Math. Scand., 53:1 (1983), 125–144.

    Article  MathSciNet  Google Scholar 

  15. K. Borsuk, “Drei Sätze über die \(n\)-dimensionale euklidische Sphäre”, Fund. Math., 20 (1933), 177–190.

    Article  Google Scholar 

  16. M. Fradelizi, “Concentration inequalities for \(s\)-concave measures of dilations of Borel sets and applications”, Electron. J. Probab., 14:71 (2009), 2068–2090.

    MathSciNet  MATH  Google Scholar 

  17. M. Fradelizi and O. Guédon, “The extreme points of subsets of \(s\)-concave probabilities and a geometric localization theorem”, Discrete Comput. Geom., 31:2 (2004), 327–335.

    Article  MathSciNet  Google Scholar 

  18. M. Fradelizi and O. Guédon, “A generalized localization theorem and geometric inequalities for convex bodies”, Adv. Math., 204:2 (2006), 509–529.

    Article  MathSciNet  Google Scholar 

  19. O. Guédon, “Kahane–Khinchine type inequalities for negative exponent”, Mathematika, 46:1 (1999), 165–173.

    Article  MathSciNet  Google Scholar 

  20. R. Kannan, L. Lovász, and M. Simonovits, “Isoperimetric problems for convex bodies and a localization lemma”, Discrete Comput. Geom., 13:3-4 (1995), 541–559.

    Article  MathSciNet  Google Scholar 

  21. L. Lovász and M. Simonovits, “Random walks in a convex body and an improved volume algorithm”, Random Struct. Algorithms, 4:4 (1993), 359–412.

    Article  MathSciNet  Google Scholar 

  22. J. Matoušek, Using the Borsuk–Ulam Theorem Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer-Verlag, Berlin, 2003.

    MATH  Google Scholar 

  23. F. Nazarov, M. Sodin, and A. Vol’berg, “The geometric Kannan–Lovász–Simonovits lemma, dimension-free estimates for volumes of sublevel sets of polynomials, and distribution of zeros of random analytic functions”, Algebra Anal., 14:2 (2002), 214–234; English transl.:, St. Petersburg Math. J., 14:2 (2003), 351–366.

    MATH  Google Scholar 

  24. L. E. Payne and H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Arch. Rational Mech. Anal., :5 (1960), 286–292.

    Article  Google Scholar 

  25. Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Nauka (Leningrad. otd.), Leningrad, 1980.

    MATH  Google Scholar 

  26. H. Hadwiger and D. Ohmann, “Brunn–Minkowskischer Satz und Isoperimetrie”, Math. Z., 66 (1956), 1–8.

    Article  MathSciNet  Google Scholar 

  27. M. Gromov and V. D. Milman, “Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces”, Compositio Math., 62:3 (1987), 263–282.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I thank the referee for useful comments.

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 20-01-00432), by the Moscow Center of Fundamental and Applied Mathematics, and by the BASIS foundation (grant no. 18-1-6-83-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kalinin.

Additional information

Translated from Funktsional'nyi Analiz i ego Prilozheniya, 2021, Vol. 55, pp. 40-54 https://doi.org/10.4213/faa3882.

Translated by O. V. Sipacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinin, A.N. Localization for Hyperbolic Measures on Infinite-Dimensional Spaces. Funct Anal Its Appl 55, 286–297 (2021). https://doi.org/10.1134/S0016266321040031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016266321040031

Keywords

Navigation