Skip to main content
Log in

Hyperelliptic Sigma Functions and Adler–Moser Polynomials

  • Research Articles
  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

In a 2004 paper by V. M. Buchstaber and D. V. Leykin, published in “Functional Analysis and Its Applications,” for each \(g > 0\), a system of \(2g\) multidimensional heat equations in a nonholonomic frame was constructed. The sigma function of the universal hyperelliptic curve of genus \(g\) is a solution of this system. In our previous work, published in “Functional Analysis and Its Applications,” explicit expressions for the Schrödinger operators that define the equations of this system were obtained in the hyperelliptic case.

In this work we use these results to show that if the initial condition of the system is polynomial, then its solution is uniquely determined up to a constant factor. This has important applications in the well-known problem of series expansion for the hyperelliptic sigma function. We give an explicit description of the connection between such solutions and the well-known Burchnall–Chaundy polynomials and Adler–Moser polynomials. We find a system of linear second-order differential equations that determines the corresponding Adler–Moser polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Buchstaber, “Polynomial dynamical systems and Korteweg–de Vries equation”, Trudy Mat. Inst. Steklova, (2016), 191–215; English transl.:, Proc. Steklov Inst. Math., 294 (2016), 176–200.

    Article  MathSciNet  Google Scholar 

  2. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, Multi-dimensional sigma-functions, arXiv: 1208.0990.

  3. V. M. Buchstaber, V. Z. Enolski, and D. V. Leykin, “Sigma-functions: old and new results”, Integrable Systems and Algebraic Geometry, vol. 2, LMS Lecture Note Series, 459 Cambridge Univ. Press, 2019, 175–214.

    MATH  Google Scholar 

  4. H. F. Baker, “On the hyperelliptic sigma functions”, Amer. J. Math., 20:4 (1898), 301–384.

    Article  MathSciNet  Google Scholar 

  5. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, “Kleinian functions, hyperelliptic Jacobians and applications”, Reviews Math. Math. Physics, 10:2 (1997), 3–120.

    MATH  Google Scholar 

  6. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry and Topology: On the Crossroad, Amer. Math. Soc. Transl., vol. 179, Adv. Math. Sci., 33 Providence, RI, 1997, 1–34.

    MathSciNet  MATH  Google Scholar 

  7. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1996.

    Book  Google Scholar 

  8. E. Yu. Bunkova, “Differentiation of genus \(3\) hyperelliptic functions”, Europ. J. Math., 4:1 (2018), 93–112; arXiv:1703.03947.

    Article  MathSciNet  Google Scholar 

  9. V. M. Buchstaber, “Multidimensional sigma functions and applications, Victor Enolski (1945–2019)”, Notices Amer. Math. Soc., 67:11 (2020), 1756–1760.

    Google Scholar 

  10. V. M. Buchstaber, D. V. Leykin, and V. Z. Enolskii, “\(\sigma\)-functions of \((n,s)\)-curves”, Uspekhi Mat. Nauk, 54:3(327) (1999), 155–156; English transl.:, Russian Math. Surveys, 54:3 (1999), 628–629.

    Article  MathSciNet  Google Scholar 

  11. V. M. Buchstaber and D. V. Leykin, “Addition laws on Jacobian varieties of plane algebraic curves”, Nonlinear dynamics, Trudy Mat. Inst. Steklova, 2005, 54–126; English transl.:, Proc. Steklov Inst. Math., 251:4 (2005), 49–120.

    Google Scholar 

  12. J. C. Eilbeck, J. Gibbons, Y. Onishi, and S. Yasuda, Theory of heat equations for sigma functions, arXiv: 1711.08395.

  13. A. Nakayashiki, “Sigma function as tau function”, Int. Math. Res. Not., :No. 3, (2010), 373–394.

    Article  MathSciNet  Google Scholar 

  14. V. M. Buchstaber and D. V. Leykin, “Heat equations in a nonholomic frame”, Funkts. Anal. Prilozhen., 38:2 (2004), 12–27; English transl.:, Functional Anal. Appl., 38:2 (2004), 88–101.

    Article  Google Scholar 

  15. V. M. Buchstaber and D. V. Leykin, “Polynomial Lie algebras”, Funkts. Anal. Prilozhen., 36:4 (2002), 18–34; English transl.:, Functional Anal. Appl., 36:4 (2002), 267–280.

    Article  MathSciNet  Google Scholar 

  16. V. I. Arnold, Singularities of Caustics and Wave Fronts, Mathematics and its Applications, 62 Kluwer Academic Publisher Group, Dordrecht, 1990.

    Book  Google Scholar 

  17. V. M. Buchstaber and A. V. Mikhailov, “Infinite-dimensional Lie algebras determined by the space of symmetric squares of hyperelliptic curves”, Funkts. Anal. Prilozhen., 51:1 (2017), 4–27; English transl.:, Functional Anal. Appl., 51:1 (2017), 2–21.

    Article  MathSciNet  Google Scholar 

  18. V. M. Buchstaber and E. Yu. Bunkova, “Sigma functions and Lie algebras of Schrödinger operators”, Funkts. Anal. Prilozhen., 54:4 (2020), 3–16.

    Article  Google Scholar 

  19. V. M. Buchstaber and S. Yu. Shorina, “The \(w\)-function of the KdV hierarchy”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212 Amer. Math. Soc., Providence, RI, 2004, 41–66.

    MathSciNet  MATH  Google Scholar 

  20. A. Nakayashiki, “On algebraic expressions of sigma functions for \((n,s)\)-curves”, Asian J. Math., 14:2 (2010), 175–212; arXiv: 0803.2083.

    Article  MathSciNet  Google Scholar 

  21. M. E. Kazarian and S. K. Lando, “Combinatorial solutions to integrable hierarchies”, Uspekhi Mat. Nauk, 70:3(423) (2015), 77–106; English transl.:, Russian Math. Surveys, 70:3 (2015), 453–482.

    Article  MathSciNet  Google Scholar 

  22. M. Adler and J. Moser, “On a class of polynomials connected with the Korteweg–de Vries equation”, Comm. Math. Phys., 61:1 (1978), 1–30.

    Article  MathSciNet  Google Scholar 

  23. J. L. Burchnall and T. W. Chaundy, “A set of differential equations which can be solved by polynomials”, Proc. London Math. Soc., 30:6 (1929–30), 401–414.

    MathSciNet  MATH  Google Scholar 

  24. A. P. Veselov and R. Willox, “Burchnall–Chaundy polynomials and the Laurent phenomenon”, J. Phys. A: Math. Theor., 48 (2015), 20.

    Article  MathSciNet  Google Scholar 

  25. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, “Rational analogs of abelian functions”, Funkts. Anal. Prilozhen., 33:2 (1999), 1–15; English transl.:, Functional Anal. Appl., 33:2 (1999), 83–94.

    Article  Google Scholar 

  26. V. M. Buchstaber and D. V. Leykin, “Differentiation of Abelian functions with respect to parameters”, Uspekhi Mat. Nauk, 62:4(376) (2007), 153–154; English transl.:, Russian Math. Surveys, 62:4 (2007), 787–789.

    Article  MathSciNet  Google Scholar 

  27. V. M. Buchstaber and D. V. Leykin, “Solution of the problem of differentiation of Abelian functions over parameters for families of \((n,s)\)-curves”, Funkts. Anal. Prilozhen., 42:4 (2008), 24–36; English transl.:, Functional Anal. Appl., 42:4 (2008), 268–278.

    Article  Google Scholar 

  28. R. P. Stanley, Enumerative Combinatorics, vol. 2, University Press, Cambridge, 1999.

    Book  Google Scholar 

  29. F. G. Frobenius and L. Stickelberger, “Über die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. Reine Angew. Math., 92 (1882), 311–337.

    MathSciNet  MATH  Google Scholar 

  30. V. M. Buchstaber and E. Yu. Bunkova, Differentiation of genus \(4\) hyperelliptic functions, arXiv: 1912.11379.

  31. A. du Crest de Villeneuve, “From the Adler–Moser polynomials to the polynomial tau functions of KdV”, J. Integrable Syst., 2:1 (2017), 012; arXiv: 1709.05632.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to A. P. Veselov and V. N. Rubtsov for useful references to works on Adler–Moser polynomials and their generalizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Buchstaber or E. Yu. Bunkova.

Additional information

Translated from Funktsional'nyi Analiz i ego Prilozheniya, 2021, Vol. 55, pp. 3–25 https://doi.org/10.4213/faa3915.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchstaber, V.M., Bunkova, E.Y. Hyperelliptic Sigma Functions and Adler–Moser Polynomials. Funct Anal Its Appl 55, 179–197 (2021). https://doi.org/10.1134/S0016266321030011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016266321030011

Keywords

Navigation